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Abstract

We show that the celebrated LMS (Least-Mean Squares) adaptive algorithm is H®
optimal. The LMS algorithm has been long regarded as an approximate solution to either
a stochastic or a deterministic least-squares problem, and 1t essentially amounts to updating
the weight vector estimates along the direction of the instantaneous gradient of a quadratic
cost function. In this paper we show that LMS can be regarded as the exact solution to a
minimization problem in its own right. Namely, we establish that it is a minimax filter: it
minimizes the maximum energy gain from the disturbances to the predicted errors, while
the closely related so-called normalized LMS algorithm minimizes the maximum energy
gain from the disturbances to the filtered errors. Moreover, since these algorithms are
central H* filters, they minimize a certain exponential cost function and are thus also
risk-sensitive optimal. We discuss the various implications of these results, and show how

they provide theoretical justification for the widely observed excellent robustness properties

of the LMS filter.
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1 Introduction

Classical methods in estimation theory (such as maximum-likelihood, maximum entropy and
least-squares) require a priori knowledge of the statistical properties of the exogenous signals.
In many applications, however, one is faced with model uncertainties and lack of statistical
information. Therefore, the introduction of the LMS (Least-Mean-Squares) adaptive filter by
Widrow and Hoff in 1960 came as a significant development for a broad range of engineering
applications since the LMS adaptive linear-estimation procedure requires essentially no advance
knowledge of the signal statisitics [1]. Since this pioneering work, adaptive filtering techniques
have been widely used to cope with time variations of system parameters and lack of a priori
statistical information [2, 3].

The LMS algorithm was originally conceived as an approximate recursive procedure that
solves the following least-squares adaptive problem: given a sequence of 1 X n input row
vectors {h;}, and a corresponding sequence of desired responses {d;}, find an estimate of an
n x 1 column vector of weights w, such that the sum of squared errors SN |d; — hswl|? is
minimized. The LMS solution recursively updates estimates of the weight vector along the
direction of the instantaneous gradient of the squared error.

Algorithms that ezactly minimize the sum of squared errors, for every value of N, are also
known and are generally referred to as recursive least squares (RLS) algorithms (see, e.g., [3,
4]). Although such exact least-squares algorithms have various desirable optimality properties
(such as yielding maximum likelihood estimates) under certain statistical assumptions on the
signals (such as temporal whiteness and Gaussian disturbances), they are computationally
more complex, and are less robust to disturbance variation than the simple LMS algorithm.
For example, it has been observed that the LMS algorithm has better tracking capabilities
than the RLS algorithm in the presence of nonstationary inputs [3].

In this paper we show that the superior robustness properties of the LMS algorithm are due
to the fact that it is a minimaz algorithm, or more specifically an H* optimal algorithm. We
shall define precisely what this means in Section 3. Here we note only that recently, following

some pioneering work in robust control theory (see, e.g., [5]) there has been an increasing



interest in minimax estimation (see [6]-[13] and the references therein) with the belief that the
resulting so-called H® algorithms will be more robust and less sensitive to model uncertainties
and parameter variations. The similarity between the objectives of adaptive filtering and H*
estimation suggests that there should be some connection between the two, and indeed our
result on the H* optimality of the LMS algorithm provides such a connection.

In addition to giving more insight into the inherent robustness of the LMS algorithm and
why it has found such wide applicability in a diverse range of problems, our result provides
LMS with a rigorous basis and furnishes a minimization criterion that has long been missing.
To be more precise, using some well-known results in H® estimation theory, we show that
the LMS algorithm is the so-called central a priori H-optimal filter, while the closely related
normalized LMS algorithm is the central a posteriori H-optimal filter.

The H* optimality property of LMS is a deterministic characterization of the algorithm.
It is also possible to give a stochastic characterization of this algorithm under the assumptions
of temporal whiteness and Gaussian disturbances. In this case, we show that LMS minimizes
the expected value of a certain exponential cost function, and is therefore risk-sensitive optimal
(in the sense of Whittle [16]).

It is ironic that the LMS algorithm is not H? optimal, contrary to what its name suggests,
but that it rather satisfies a minimax criterion. Moreover, in most H problems, the optimum
solution has not been determined in closed form - what is usually determined is a certain
type of suboptimal solution. We show, however, that for the adaptive problem at hand, the
optimum solution can be determined.

The remainder of the paper is organized as follows. In Sec. 2 we introduce the problem
of adaptive filtering and motivate the question of the robustness of estimators. In order to
address the robustness question, we introduce the H* approach in Sec. 3 and formulate the
H*° estimation problem as one that minimizes the maximum energy gain from the disturbances
to the estimation errors. Sec. 4 studies the general problem of state-space H* estimation and,
in particular, gives expressions for the H> a posteriori and a priori filters, as well as their

full parametrization. The main result is given in Sec. 5 where we formulate the H adaptive



filtering problem as a state-space problem and use the results of Sec. 4 to show that the
normalized LMS algorithm is the central a posteriori H* optimal adaptive filter, and that if
the learning rate is chosen appropriately, LMS is the central a priori H* optimal adaptive
filter. In both cases, the LMS and normalized LMS algorithms guarantee that the energy of
the estimation errors never exceeds the energy of the disturbances. Sec. 6 then considers a
simple example that demonstrates the robustness of LMS compared to RLS, and also briefly
discusses the merits of being H®-optimal. In Sec. 7 the full parametrization of all H®
optimal adaptive filters is given, and in Sec. 8 we show that LMS and normalized LMS have
the additional property of being risk-sensitive optimal. Sec. 9 mentions some further results

using the approach and ideas of this paper and Sec. 10 provides the conclusion.

2 Adaptive Filtering

As shown in Fig. 1, suppose we observe an output sequence {d;} that obeys the following
model:

di=hw+v, 1>0 (1)

T
where h; = | h;y hiy ... hy, |18aknown 1xninput vector,w = | w; wy ... w, is

an unknown n x 1 weight vector that we intend to estimate, and v; is an unknown disturbance,
which may also include modelling errors. We shall not make any assumptions on the noise
sequence {v;} (such as stationarity, whiteness, Gaussian distributed, etc.). We denote the

estimate of the weight vector using all the information available up to time ¢ by

UA)ll = ]:(d(),dh .. .7di;h07h17 - hz)

2.1 Least-Squares Methods

There are a variety of choices for w;, but the most widely used estimate is one that satisfies

the following least-squares (or H?) criterion:

min | 7w — @y [P+ Y |dj — hjwl?] (2)

7=0
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Figure 1: The model for adaptive filtering.

where w|_; is the initial estimate of w, and p > 0 represents the relative weight that we give
to our initial estimate compared to the “sum of squared-error” term Zé‘:o |d; — hjw|?.

The ezact solution to the above criterion is the RLS (Recursive Least Squares) algorithm:

W)y = W)y + kpi(di — hii—q) , W)y (3)
with &, ; = % and P; satisfying the Riccati recursion
Pihih; P;
B = R - y P — I 4
+1 1+ hi Pl 0= H (4)

The RLS algorithm is used because under suitable stochastic assumptions it has the fol-

lowing two properties:

(a) If w — 10y and the {v;} are assumed to be zero-mean, uncorrelated and, in the case of
the {v;}, temporally white random variables with variances pf and 1, respectively, then

the RLS algorithm minimizes the expected prediction error energy,
7
EZ |hjw — hjw;_q|*
=0

(b) If, in addition to the assumptions of part (a), w — @_; and the {v;} are assumed to be
jointly Gaussian, then the cost function in (2) becomes the negative of the log-likelihood

function and RLS yields the maximum-likelihood estimate of the weight vector w.

2.2 Gradient-Based Methods

In gradient-based algorithms, instead of exactly solving the least-squares problem (2), the

estimates of the weight vector are updated along the negative direction of the instantaneous



gradient of the cost function appearing in (2). Two examples are the LMS (Least-Mean-
Squares) [1]

Wy = Wy—y + phi(d; — hibp_y) , by (5)
and the normalized LMS

Kk
1+ ,uhihf

w|; = Wjj—1 +

Ri(d; — hiibi—q) , W)y (6)

algorithms. Note that in the case of LMS the gain vector k,; in RLS (which had to be
computed by propagating a Riccati equation) has been simply replaced by ph’. Likewise if we
compare normalized LMS with the RLS algorithm, we see that the difference is that instead
of propagating the matrix P; via the Riccati recursion we have simply set P, = ul, for all
. For this reason the LMS and normalized LMS algorithms have long been considered to be
approzimate least-squares solutions and were thought to lack a rigorous basis.

We should note here that although we have introduced the LMS algorithm as an approxi-
mate deterministic least-squares solution, it is also possible to motivate it as an approximate

stochastic least-squares solution (see [2, 3]).

2.3 The Question of Robustness

We saw that under suitable stochastic assumptions, the RLS algorithm has certain desirable
optimality properties, namely it minimizes the expected prediction error energy and yields
maximum-likelihood estimates. However, the question that begs itself is what the performance
of such an estimator will be if the assumptions on the disturbances are violated, or if there are
modelling errors in our model so that the disturbances must include the modelling errors? In
other words

- is it possible that small disturbances and modelling errors may lead to large estimation
errors?

Obviously, a nonrobust algorithm would be one for which the above is true, and a robust
algorithm would be one for which small disturbances lead to small estimation errors. More

explicitly, in the adaptive filtering problem, where we assume an FIR model, the true model may



be IIR, but we neglect the tail of the filter response since its components are small. However,
unless one uses a robust estimation algorithm, it is conceivable that this small modelling error
may result in large estimation errors.

The problem of robust estimation is thus an important one. As we shall see in the next
section, the H® estimation formulation is an attempt at addressing this question. The idea is
to come up with estimators that minimize (or in the suboptimal case, bound) the maximum
energy gain from the disturbances to the estimation errors. This will guarantee that if the
disturbances are small (in energy) then the estimation errors will be as small as possible (in
energy), no matter what the disturbances are. In other words the maximum energy gain is
minimized over all possible disturbances. The robustness of the H* estimators arises from
this fact. Since they make no assumption about the disturbances, they have to accomodate

for all conceivable disturbances, and are thus over-conservative.

3 The H* Approach

We begin with the definition of the H* norm of a transfer operator. As will presently become
apparent, the motivation for introducing the H® norm is to capture the worst case behaviour

of a system.

Definition 1 (The H* Norm) Let hy denote the vector space of square-summable complex-
valued causal sequences with inner product < {fi},{gr} > = Y heo figr . where x denotes
complex conjugation. Let T be a transfer operator that maps an input sequence {u;} to an

output sequence {y;}. Then the H* norm of T is defined as

lyll,
ITl|l.. = sup
o uzomehs llull

where the notation |[u||, denotes the hy—norm of the causal sequence {uy}, viz., ||ul|5 =

2 k0 WUk

Note that the H® norm may thus be regarded as the maximum energy gain from the input

u to the output 7.



3.1 Formulation of the H* Adaptive Filtering Problem

Recall that w|; = F(do,...d;;ho,...h;) denotes the estimate of the weight vector using all
the information available from time 0 to time ¢. In this paper we shall be interested in the

following two estimation errors: the filtered (or a posteriori) error
efq = hiw — h;wy;, (7)
and the predicted (or a priori) error
epi = hiw — hiy;_y. (8)

[Note that in the above errors we compare the estimates h;w); and h;t);,_; with the uncorrupted

output h;w of model (1) and not with the observation d;.]

P2 w0 — ) ——
nF)

D — . — h. _ bty
vy €pi = hiw — haby_y

Figure 2: Transfer operator from the unknown disturbances {,u_l/z(w — 1), {vj}520} to the

prediction errors {ep, ;}72,. Likewise for Ty (F).

Any choice of estimation strategy F(-) will induce transfer operators Ty (F) and T},(F) that
map the unknown disturbances {u='/2(w — W)_1),{v;}320} to the estimation errors {e;;}72,
and {e, ;}52,, respectively. See Fig. 2.

In the H*® framework, robustness is ensured by minimizing the maximum energy gain from

the disturbances to the estimation errors. This leads to the following problem.

Problem 1 (H* Adaptive Filtering Problem) Find an H®-optimal estimation strategy
w); = Fy(do, ..., di; ho, ..., hg), that minimizes || T¢(F)||o, and an H*-optimal strategy ); =

Foldo, ... dis ho,y ..., hy), that minimizes ||T,(F)||c. Also obtain the resulting

2
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and

2
) ) 9 . Hesz
2 =il [T(F)L —inf sup : ’ (10)
popt — 1 114 F  wwehs u—llw—w|_1|2+HUH§

where |w — w_1 > = (w— ;)T (w — d)_y).

In order to solve the above H* adaptive filtering problem we shall begin by reviewing some
basic results from state-space H® estimation theory. Although it is possible to give a “first
principles” derivation of the solution to the above H* adaptive filtering problem (and we shall
indeed do so in the Appendix), some study of the more general state-space estimation problem
has its own merits, and moreover allows for various generalizations of the results presented

here.

4 State-Space H* Estimation

We first give a brief review of some of the results in H* estimation theory using the notation
of the companion papers [18, 19]. The reader is also referred to [6]-[13] and the references

therein for earlier results and alternative approaches.

4.1 Formulation of the State-Space H*° Problem
Consider the time-variant state-space model

Tiy1 = g+ G, Tg )

v, = Hz; +v;, >0
where F; € C"*" G; € C™*™ and H; € CP*" are known matrices, xg, {u;}, and {v;} are
unknown quantities and y; is the measured output. We can regard v; as a measurement noise
and u; as a process noise or driving disturbance. Let z; be linearly related to the state z; via
a given matrix L; € C?*", viz.,

z; = L;x;.

We shall be interested in the following two cases. Let Z;; = Ff(yo,41,--.,%;) denote an

estimate of z; given observations {y;} from time 0 up to and including time ¢, and 2, =



Iy (o — &) >

{u;}iny — T i(Fy) — {&; — Lz},

{Uj };:0

15" (2o — #0) ——

{uj iy —> 1,,i(Fp) — {% — Ljz;}i,

{Uj };:0

Figure 3: Transfer matrices from disturbances to filtered and predicted estimation errors.

Fo(Yo, Y1, -, yi—1) denote an estimate of z; given observations {y;} from time 0 to time 7 — 1.
We then have the filtered error

€fi = ZA,’le — Liﬂ% (12)
and the predicted error

€pi = 2 — L. (13)

Let T4 ;(F¢) (1,:(F,)) denote the transfer operator that maps the unknown disturbances
{Hal/z(xo—io), {u]‘};:(), {vj}ézo} to the filtered (predicted) errors {ef,j}ézo ( {ep7j}§:0), where
Zo denotes an initial guess of xg, and Ilp is a given positive definite matrix reflecting a priori
knowledge of how close ¢ is to the initial guess Zg. See Figure 3. The (so-called finite-horizon)

H*™ estimation problem can now be stated as follows.

Problem 2 (Optimal H* Problem) Find H-optimal estimation strategies 2;; = F(yo, y1, -

and 2, = Fp(Yo, Y1, - - -, Yi—1) that respectively minimize |15 ;(Fy)||co and || T, :(Fp)||oo, and ob-

tain the resulting

72 = nf [Ty (Fp)|% = inf  sup _ ioolel Z»
’ Fy Fs wouehvehs (To — 20)* o™ (20 — o) + 2 =0 |uj]* + 250 [v;]?
(14)
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and

| 2

. . j=o lep,i
7}3,01975 = l%f HTp,i(]:p)HZo = l%f xmu::ﬁyé@ (xo _ fo)*Ho_l(ﬂﬁo _ go) T Z;:o |Uj|2 n Z;ZO |U]'|2'
(15)

Note that the infimum in (15) is taken over all strictly causal estimators F,, whereas in
(14) the estimators F; are causal since they have additional access to y;. This is relevant since
the solution to the H* problem, as we shall see, depends on the structure of the information
available to the estimator.

The above problem formulation shows that H® optimal estimators guarantee the smallest
estimation error energy over all possible disturbances of fixed energy. H estimators are thus
over conservative, which reflects in a better robust behaviour to disturbance variation.

A closed form solution of the optimal H® problem is available only for some special cases
(one of which is the adaptive filtering problem as we show here), and a simpler problem results

if one relaxes the minimization condition and settles for a suboptimal solution.

Problem 3 (Sub-optimal H*> Problem) Given scalars v > 0 and v, > 0, find estima-
tion strategies Z;; = Fr(Yo,y1,-- -, %) and 2; = Fyp(Yo, Y1, .-, Yi—1) that respectively achieve
| T5i(Fp) lloo< vp and || Ty i(Fp) ||eo< Yp- This clearly requires checking whether vy > vy,

and Yp 2 Yp,o-

The above two problem formulations are for the finite horizon case. In the infinite horizon
case, to guarantee that |[7;(F) [l < 77 and ||7,(F)]. < 7, we need to ensure |[T,(F) o < 7y
and [|T},:(F)||ee < 7p for all <.

4.2 The H* Filters

We now briefly review the solutions of the H* filtering problems using the notation of [18, 19].

Theorem 1 (The H* Aposteriori Filter) For a given v > 0, if the F; are nonsingular

then an estimator with ||Ty ;|| < v exists if, and only if,
PrU 4 HIH; — 57 °L3L; >0,  j=0,...,i (16)

11



where Py = Ilg, and P; satisfies the Riccati recursion

L;
Pip1 = FiPi 1T + GG - [ Ly H; ] R Py (17)
H;
with
2
—v*I 0 L;
R. ;= + Pj[L; H]*]
0o I H;

If this is the case, then one possible H, filter with level v is given by

il = Ly,
where & j); is recursively computed as
i]‘+1|]‘+1 = F]£]|] + I(f7]‘_|_1(y]‘_|_1 — H]+1F]£]|])7 i_1|_1 = initial guess (18)
and
- -1
Kyjor =P Hiy (I 4+ Hjp P Hy )™ (19)

Theorem 2 (The H* Apriori Filter) For a given v > 0, if the F; are nonsingular then an

estimator with || T, ;|| < v exists if, and only if,

Pl =Pt —yTL5L; >0, j=0,...,i (20)

where P; is the same as in Theorem 1. If this is the case, then one possible H, filter with

level v is given by

Zj = Ljij, (21)
4 =Fi;+ K, ;(y; — H;2;), %o = initial guess (22)

where
Ky, =F;P,H I+ H;P;H)™" (23)

12



Note that the above two estimators bear a striking resemblance to the celebrated Kalman

filter:
Bipn = Fjij+ PP H(I+ HjPH?) ™ y; — Hji) (21)
Piy1n = FiPF+ GG = FP(I+ HijH]*)_leFJ*
and that the only difference is that the P; of equation (19), and Pj of equation (23), satisfy
Riccati recursions that differ with that of (24). However, as v — oo, the Riccati recursion (17)
collapses to the Kalman filter recursion (24). This suggests that the H> norm of the Kalman
filter may be quite large, indicating that it may have poor robustness properties.

It is also interesting that the structure of the H® estimators depends, via the Riccati
recursion (17), on the linear combination of the states that we intend to estimate (i.e., the L;).
This is as opposed to the Kalman filter, where the estimate of any linear combination of the
state is given by that linear combination of the state estimate. Intuitively, this means that the
H*= filters are specifically tuned towards the linear combination L;z;.

Note also that condition (20) is more stringent than condition (16), indicating that the
existence of an a priori filter of level + implies the existence of an a posteriori filter of level ~,
but not necessarily vice versa.

We further remark that the filter of Theorem 1 (and Theorem 2) is one of many possible

filters with level v. A full parametrization of all estimators of level v are given by the following

Theorems. (For proofs see [19]).

Theorem 3 (All H* Aposteriori Estimators) All H* « posteriori estimators that achieve

a level ¢ (assuming they exist) are given by
~ ~ b b - b L
i = Liggy+ 71— LB+ HYHj) = L] (25)
L X w L .
8 (I + HiPHD)E (g = Hidgpg), - (1 + HoPoHE) ¥ (yo — Hodojo) )

where @ j; satisfies the recursion

Tipri = Fidj + Kypjan(yi — Hjpo Fyd ;) — Ko (25 — Lidy);) (26)
with Ky ;41 the same as in Theorem 1,
Kej=(+ P Hijp  Hip ) (PP HHS — 472 L L5) 7 L, (27)

13



and

So(ao)

Si(ai, ao)
S(aj,...,a0) =

| Silay, ..., a0)

is any (possibly nonlinear) contractive causal mapping, i.e.,

k k
Z|Sj(aj,...,a0)|2<2|aj|2 forall k=0,1,...,1.
7=0 7=0

Theorem 4 (All H* Apriori Estimators) All H* a priori estimators that achieve a level

vp (assuming they exist) are given by

N =

2 = Ljij+ (yil — LjP;L}) (28)

N

S; ((I—I- Hi P H )72 (yjm1 — HjmaZo), .. (I + HoPyHg) ™7 (yo — HOfO))

where

Zr =&+ PoLi (= 4 LpPeL3) ™" (3 — L), (29)
T; satisfies the recursion

. . R A A T
Bipa)j = 15851 + 15D [ L} HF ] RZj : (30)

y; — HjZj4

with P;, Pj and R. ; given by Theorem 2, and S is any (possibly nonlinear) contractive causal

mapping.

Note that although the filters obtained in Theorems 1 and 2 are linear, the full parametriza-
tion of all H* filters with level v is given by a nonlinear causal contractive mapping §. The
filters of Theorems 1 and 2 are known as the central filters and correspond to & = 0. These
central filters have a number of other interesting properties. They correspond, as we shall see
in a subsequent section, to the risk-sensitive optimal filter [16], and can be shown to be the

mazimum entropy filter [21].

14



5 Main Result

Let us first note that the basic equation of the adaptive filtering model (1) can be rewritten

in the following state-space form:

tr m o o= w. (31)
di = hixit+ v

This is a relevant step since it reduces the adaptive filtering problem to an equivalent state-
space estimation problem. This point of view has been recently proposed in [4] where a unified
square-root-based derivation of exponentially-weighted RLS adaptive algorithms is obtained
by reformulating the original adaptive problem as a state-space linear least-squares estimation
problem and then applying various algorithms from Kalman filter theory. Here we shall instead
apply the H® theory to the state-space model (31) and show that the optimum a priori and

a posteriori H* filters reduce to the LMS and normalized LMS algorithms, respectively.

At this point we need one more definition.

Definition 2 (Exciting Inputs) The input vectors h; are called exciting if, and only if,

N—oo

N
lim Zhihf =0
=0

5.1 The Normalized LMS Algorithm

We first consider the a posteriori filter and show that it collapses to the normalized LMS

algorithm.

Theorem 5 (Normalized LMS Algorithm) Consider the state-space model (31), and sup-
pose we want to minimize the H* norm of the transfer operator T¢(F) from the unknowns
2 (w — W|_y) and {v;}52, to the filtered error {ey; = 2;); — hjw}52,. If the input data {h;}
is exciting, then the minimum H® norm is
P)/f7opt = 1'
In this case, the central optimal H* a posteriori filter is
Zjlj = hyjy,

15



where wy; is given by the normalized LMS algorithm with parameter p,

il

———————(d; 1 — hjp1w;), Ww_; = initial guess. 32
1—|—,uh]‘_|_1h;_|_1( J+1 J+1 |]) -1 g (32)

Wij41 = W +

Intuitively it is not hard to convince oneself that v ., cannot be less than one. To this
end, suppose that the estimator has chosen some initial guess @ _;. Then one may conceive of
a disturbance that yields an observation that coincides with the output expected from w_,
e,

hiﬁ)|_1 = hw+v;, = d;.

In this case one expects that the estimator will not change its estimate of w, so that w; = w_;

for all 7. Thus the filtered error is
efi = hiw — hiw;; = hjw — hi)_y = —wy,

and the ratio in (9) becomes

[lvll? _ [[i(w — aby_y)[|”

ptw =y P ol e — by 2 (R (w0 — ) [

When the {h;} are exciting, for any ¢ > 0, we can find a weight vector w and an integer N

—0 2
such that SN |hi(w — B_y)|? > lw—1)_ |

> R With these choices we have

SN [hi(w — )| 1.
ptw — iy 2+ SN Jhe(w — )| T 7

so that the ratio in (9) can be made arbitrarily close to one.

The surprising fact though is that v, ., is exactly one and that the normalized LMS al-
gorithm achieves it. What this means is that normalized LMS guarantees that the energy of
the filtered error will never exceed the energy of the disturbances. This is not true for other
estimators. For example, in the case of the recursive least-squares (RLS) algorithm, one can

come up with a disturbance of small energy that will yield a filtered error of large energy [20].

16



Proof of Theorem 5: We apply the aposteriori filter of Theorem 1 to the state-space model

(31) where F; =1, G; =0, H; = h;, and L; = h;. Thus the Riccati equation simplifies to

-2 0 i h;
P¢+1=P¢—P¢[hj hj] + Pi[hf hf] B
0 1 h; h;
which, using the matrix inversion lemma [23], implies that
-2
B B —v7°I 0 h;
Py = P¢1+[hf h*]
0 1 h;
= P+ (1= y7)hh.
Consequently, starting with PO_1 =pu~ 1, we get
P = 4 (1 - Zh* (33)

Now we need to check the existence condition (16) and find the optimum 7y o, It follows from

the above expression for P_I_l1 that we have

i+1
Pﬁ-ll + Hi Higr — v~ Lz+1Lz+1 =p 4 (1~ Zh* (34)

Suppose v < 1 so that 1 —~7% < 0. Since the {h;} are exciting, we conclude that for some £,

and for large enough ¢, we must have

i+1 -1

Z|h1k| 1

This implies that the k%" diagonal entry of the matrix on the right hand side of (34) is negative,
viz.,
1+1
(=) Y Rl <0
Consequently, P Z+1 +H  Hipr — 7_2Lf_|_1Li_|_1 cannot be positive-definite. Therefore, v op¢ >
1. We now verify that vy ., is indeed 1. For this purpose, we note that if we consider v =1
then from equation (33) we have P; = pf > 0 for all 7 and the existence condition is satisfied.

If we now write the a posteriori filter for vy ,,; = 1, with P, = ul, we get the desired so-called

normalized LMS algorithm (32).
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5.2 The LMS Algorithm

We now apply the a priori H>-filter and show that it collapses to the LMS algorithm.

Theorem 6 (LMS Algorithm) Consider the state-space model (31), and suppose we want
to minimize the H> norm of the transfer operator T,,(F) from the unknowns ,u_l/z(w — 1)
and {v;}52, to the predicted error {e, ; = Z; — hjw}i2,. If the input data {h;} is exciting, and
0< i< inf — (35)
i hih?
then the minimum H® norm is
Vp.opt = 1-

In this case, the central optimal a priori H* filter is

Zj = hi;
where w;_y is given by the LMS algorithm with learning rate p, viz.,

Wyj = Wiy + ph(d; = b)), Wy (36)

Proof: The proof is similar to that for the normalized LMS case. For v < 1, the matrix P; of

Theorem 2 cannot be positive-definite. For v = 1, we get P, = pl > 0 for all 2, and

Pt = Pl

K3

= ,u_ll — hrhz
It is straightforward to see that the eigenvalues of ]52»_1 are
{:u_lv :u_lv ) ,u_lv ,u_l - hzhj}

Thus ]52»_1 is positive definite if, and only if, (35) is satisfied, which leads to 7, opr = 1. Writing

the H® a priori filter equations for v = 1 yields
b = djioy + B0+ hiBh) T (d; = hidjiy)
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= y_y + P(I+ hfhi P) T R (dy — hitby;_y)
= @y + (P + hrhe)THRE(dy — hity_s)

= Wp_y + phi(d; — hibp_y).

The above result indicates that if the learning rate p is chosen according to (35), then LMS
ensures that the energy of the predicted error will never exceed the energy of the disturbances.
It is interesting that we have obtained an upper bound on the learning rate p that guarantees
this H* optimality, since it is a well known fact that LMS behaves poorly if the learning rate
is chosen too large. It is also interesting to compare the bound in (35) with the bounds studied
in [2] and [24].

We further note that if the input data is not exciting, then > ;2 h%h; will have a finite
limit, and the minimum H™ norm of the a posteriori and a priori filters will be the smallest

~ that ensures
pt 4+ (1 =772 Z hih; > 0.
=0
This will in general yield 7,,; < 1, and Theorems 1 and 2 can be used to write the optimal

filters for this v, In this case the LMS and normalized LMS algorithms will still correspond

to v = 1, but will now be suboptimal.

6 An Illustrative Example

To illustrate the robustness of the LMS algorithm we consider a special case of model (31),
where h; is now a scalar that randomly takes on the values +1 and —1.
Using the LMS algorithm we can write the following state-space model for the predicted
error e, ; = hx; — hi@;:
Fipr = (L= plhl®)@; — phiv; = (1 — p)&; — phiv;
epi = I

where &; = x; — Z;, and where we have used the fact that the h; have magnitude one. Assuming

we have observed N points of data, we can then use (37) to write the operator, Tj,,, n (1), that
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N-1

. _ L. _
maps the disturbances {u~ 2%, {v;}5'} to the {e, } N5t
€p,0
€p,1
€p,N—1
15 ho 0 0 0 L
1 B 2Zo
u2(1—u)h1 —/,lhlho 0 0
Vo
u%(l—u)2h2 —/,l(l —[,l)tho —uthl 0
L N-1 N—2 N-3 vN -2
nz(l—p) hn—1 —p(l—p) hy_1ho —p(l—p) hn_1hy —phy_1hyn_2
Tims,N (1)
(38)

Suppose now we use the RLS algorithm (viz. the Kalman filter) to estimate the states in

(31)7 €.,
Tip1 = a5 + kp,i(di )
where £, ; = % and
hi|*p? v b
| il = Po = ft. )

Pt =Pi— 1+ pilhi|? B T+p,  1+p]

Then we may write the following state-space model for the RLS predicted error e;M» = h;z; —

hiih
Z; = (1—-Fk,;h; ii—kﬂ'vi
+1 ( Py ) P L Fo=w—34_, (40)
Now solving (39) yields
@
P = . ; 41
P= T (41)
and

1 — kyh; = 2L, (42)

kp,i = hipi-l—h Di
P

Using (41), (42), and the state-space model (40) we can also write the transfer operator
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Figure 4: Mazimum singular value of transfer operators Ty, n(pt) and Trs (1) as a function

of N for the values ;p = .9 and p=1.5.

Tris,n (1) that maps the disturbances to the predicted errors as follows:

6p,N—l

7

1
12 ho 0 0 0
1 phy hihg

v v 0 .. 0
L hy hahg haohy

M2 1on —Hiiz. —Hiiz. 0

I _hnoa L hn—1he o hnoaha hn_1hn_2
T+ (N—1)n HiT -1 HiTv—1n I+ (N—1)n

Trys,n(H)

UN-—-2

(43)

We now study the maximum singular values of Ty, (1) and Th5 (1) as a function of

p and N. Note that in this special problem, condition (35) implies that g must be less than

one to guarantee the H* optimality of LMS. Therefore we chose the two values y = .9 and

= 1.5 (one greater and one less than p = 1). The results are illustrated in Figure 4 where

the maximum singular values of Ty, (1) and T,y5 v (i) are plotted against the number of

observations N. As expected, for g = .9 the maximum singular value of Ty, n(p) remains

constant at one, whereas the maximum singular value of 7,5 n(p) is greater than one and

increases with N. For gy = 1.5 both RLS and LMS display maximum singular values greater
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than one, with the performance of LMS being significantly worse.

Figure 5 shows the worst case disturbance signals for the RLS and LMS algorithms in the
1 = .9 case, and the corresponding predicted errors. These worst case disturbances are found
by computing the maximum singular vectors of Ty,50(.9) and Ti,550(.9), respectively. The
worst case RLS disturbance, and the uncorrupted output h;z;, are depicted in Figure 5a. As
can be seen from Figure 5b, the corresponding RLS predicted error does not go to zero (it
is actually biased), whereas the LMS predicted error does. The worst case LMS disturbance
signal is given in Figure 5c, and as before, the LMS predicted error tends to zero, while the
RLS predicted error does not. The form of the worst case disturbances (especially for RLS)
are quite interesting; they compete with the true output early on, and then go to zero.

The disturbance signals considered in this example are rather contrived and may not happen
in practice. However, they serve to illustrate the fact that the RLS algorithm may have poor
performance even if the disturbance signals have small energy. On the other hand, LMS will

have robust performance over a wide range of disturbance signals.

6.1 Discussion

In Section 5.1 we motivated the v ., = 1 result for normalized LMS by considering a distur-
bance strategy that made the observed output d; coincide with the expected output h;w|_;.
It is now illuminating to consider the dual strategy for the estimator.

Recall that in the a posteriori adaptive filtering problem the estimator has access to obser-
vations do, dy, ..., d; and is required to construct an estimate of Z;; of the uncorrupted output
z; = h;x;. The dual to the above mentioned disturbance strategy would be to construct an
estimate that coincides with the observed output, viz.,

zi = di. (44)

e

The corresponding filtered error is:

efi = Zili — hiwg = di — hjxy = v;.
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Figure 5: Worst case disturbances and the corresponding predicted errors for RLS and LMS. (a)
The solid line represents the uncorrupted output h;x; and the dashed line represents the worst
case RLS disturbance. (b) The dashed line and the dotted line represent the RLS and LMS
predicted errors, respectively, for the worst case RLS disturbance. (c) The solid line represents
the uncorrupted output h;x; and the dashed line represents the worst case LMS disturbance. (d)
The dashed line and the dotted line represent the RLS and LMY predicted errors, respectively,

Jfor the worst case LMY disturbance.
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Thus the ratio in (9) can be made arbitrarily close to one, and the estimator (44) will achieve
the same vy, = 1 that the normalized LMS algorithm does.

The fact that the simplistic estimator (44) (which is obviously of no practical use) is an
optimal H® aposteriori filter seems to question the very merit of being H* optimal. A first
indication towards this direction may be the fact that the H* estimators that achieve a certain
level 4 are nonunique. In our opinion, the property of being H optimal (i.e. , of minimizing
the energy gain from the disturbances to the errors) is a desirable property in itself. The high
sensitivity of the RLS algorithm to different disturbance signals, as illustrated in the example of
Section 6, clearly indicates the desirability of the H optimality property. However, different
estimators in the set of all H optimal estimators may have drastically different behaviour
with respect to other desirable performance measures.

In Section 7 we develop the full parametrization of all H* optimal a posteriori and a
priori adaptive filters, and show how to obtain (44) as a special case of this parametrization.
Moreover, it can be shown (see [22]) that among all H*-optimal a posteriori filters the filter
(44) has the worst H? (or, roughly speaking, average) performance. Thus it is the least
desirable H*-optimal filter with respect to an H? criterion. On the other hand, as indicated
in Theorems 5 and 6, the LMS and normalized LMS algorithms correspond to the so-called
central filters. These central filters have other desirable properties that we discuss in Section
8: they are risk-sensitive optimal and can also be shown to be maximum entropy.

The main problem with the estimator (44) is that it makes absolutely no use of the state-
space model (31). We should note that it is not possible to come up with such a simple minded
estimator in the a priori case: indeed as we shall see in the next section, the a priori estimator
corresponding to (44) is highly nontrivial. The reason seems to be that since in the a priori case
one deals with predicted error energy, it is inevitable that one must make use of the state-space
model (31) in order to construct an optimal prediction of the nexzt output. Thus in the a priori

case, the problems arising from such unreasonable estimators such as (44) are avoided.
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7 All H* Adaptive Filters

In Section 6.1 we came up with an alternative optimal H* a posteriori filter. We now use the

results of Theorems 3 and 4 to parametrize all optimal H* a priori and a posteriori filters.

Theorem 7 (All H* Aposteriori Adaptive Filters) Ifthe input date {h;} is exciting, all

H*® optimal aposteriori adaptive filters that achieve v ,p¢ = 1 are given by

. . oL 1 . wy L .
E1j = hyiy + (14 05 T28; (U )2 (d = hjiby), -, (14 phohd)? (do — hotip))
(45)
where 1w); satisfies the recursion

,uh]_H - ,uh;

— 1 (d; —h; w'_—ZA"‘—h‘UA)‘, W 46
1—|—Iuh]+1h]+1( J+1 J+1 |]) 1—|—,uh]'_|_1h§_|_1( 7ls J |]) -1 ( )

W41 = W5 +

and S is any (possibly nonlinear) contractive causal mapping.

Proof: Simply restating the result of Theorem 3 for the special case I'; =1, G; =0, H; = h;

and L; = h;, and using the identity
I—hi(P7l 4 B5hy) ™ hs = (1 + ki Pih) ™,

along with the fact that for the H*-optimal a posteriori adaptive filters we have vy ¢ = 1

and P; = ul, yields the desired result.

We can now note the significance of some special choices for the causal contraction S.
(i) S =0: This yields the normalized LMS algorithm.
(i) & =1 : This yields
2 = hity + (14 phih) "3 (1+ ph; k)3 (d; — hidy) = d;,
which is the simple minded estimator of Section 6.1.

(iii) & = —1 : This yields

l\J|>—-

251 = ity — (14 phih?) 73 (14 phih?)? (d; — hjidy) = 2hyiby; — dj,

7li
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so that the recursion for ﬁ)u becomes

phy
L+ phjpihGyy

il

J 1—|—,uh]‘_|_1h;+1( J+1 J+1 |])

By = @ (dj = hjiby;), ).

Theorem 8 (All H* Apriori Adaptive Filters) If the input data {h;} is exciting, and

0 < p <inf; h}Tf then all H* optimal apriori adaptive filters are given by

~ N sy L % 1 _ L _
& = hyiby g+ (1—ph 05385 (1= 1) 2 (dj oy — hyo1@)i_), -, (1= pthoh3)? (do — ho ) )

(47)
where
Wiy = W1 + %(Zk — hpbp_1), (48)
-1+ ,uhkh};
w); satisfies the recursion
Wy = oy + phl(dj — hj;_y) — phl (25 = hjby;_y), W) (49)

and S is any (possibly nonlinear) contractive causal mapping.

Proof: Simply restating the result of Theorem 4 for the special case I'; =1, G; =0, H; = h;
and L; = h;, and using the fact that for the H*°-optimal a priori filter we have v, .,y = 1,
P; = pl and P; = ul — hih;, yields the desired result. Indeed equations (47), (48) and (49)
are the corresponding specializations of equations (28), (29) and (30), respectively.

We once more note the consequences of some special choices of the causal contraction §.
(i) $ =0: This yields the LMS algorithm.
(i) & =1 : This yields
Zj = hj_ 4 (1 - thh;)%(l - th—1h§_1)%(dj—1 — hj_1w);_y),

where w);_y and 1|;_; satisfy (48) and (49). The above filter is the a priori adaptive
filter that corresponds to the simple minded estimator of Section 6.1. Note that in this

case the filter is highly nontrivial.
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(iii) & = —1 : This yields

N A sy L * 1 _
Z; = h]‘wu_l — (1 — ,uh]‘hj)2 (1 — ,Uhj—lh]‘_1)2 (d]‘_l — hj—1w|j—2)-

Note that it does not seem possible to obtain a simplistic a priori estimator that achieves

optimal performance.

8 Risk-Sensitive Optimality

In this section we focus on a certain property of the central H® filters, namely the fact that they
are risk-sensitive optimal filters. This will give further insight into the LMS and normalized
LMS algorithms, and in particular will provide a stochastic interpretation in the special case
of disturbances that are independent Gaussian random variables.

The risk-sensitive (or exponential cost) criterion was introduced in [14] and further studied
in [15, 16, 17]. We begin with a brief introduction to the risk-sensitive criterion. For much

more on this subject consult [16].

8.1 The Exponential Cost Function

Although it is straightforward to consider the risk-sensitive criterion in the full generality of
the state-space model of Section 4, here we only deal with the special case of our interest. To
this end, consider the state-space model corresponding to the adaptive filtering problem we

have been studying:
f o , Xg =W (50)
d; = hiz;+v;
where we now assume that w and the {v;} are independent Gaussian random variables with
means w|_; and zero and covariances Ilg and I, respectively. As before, we are interested in
the filtered and predicted estimates Z;; = Fi(do,dy, ..., d;) and 2, = F,(do, dy, ..., d;—1) of the

uncorrupted output z; = h;z;. The corresponding filtered and predicted errors are given by

€fi = Zili — Zi and e,; = Z; — z;. The conventional Kalman filter is an estimator that performs
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the following minimization (see e.g. [25, 26]):

min

{5}

EZe;7jep7j] . (51)

J=0
where the expectation is taken over the Gaussian random variables w and {v;}72, whose joint

conditional distribution is given by:

p(w, vo, ..., vi|do, ..., d;) x

eap [—% ((w — 1) g (w — 1) + i(dj = hjaj)(dj - hﬂ%‘))] )

i=0

and where the symbol o stands for 'proportional to’. In the terminology of [16], the filter that
minimizes (51) is known as the risk-neutral filter.
An alternative criterion that is risk-sensitive has been extensively studied in [14] - [17] and

corresponds to the following minimization problem

2 6
min ur;(0) = min (——lo [Eeac —=C Z]), 52a
fin ppi(6) = min | =Glog | Beap(=5Cy) (52a)
or
min ji,; () = min (—glo [Eeac (—QC )]) (52b)
Gy Ty Te I T e )

where Cy; = Eé:o e} €p:and Gy = Z;‘:o e i€pi- The criteria in (52a) and (52b) are known
as the a posteriori and a priori exponential cost functions, and any filters that minimize 5 ;()
and pi,;(0) are referred to as a posteriori and a priori risk-sensitive filters, respectively. The
scalar parameter @ is correspondingly called the risk-sensitivity parameter. Some intuition
concerning the nature of this modified criterion is obtained by expanding ;(6) (where we have
dropped the subscripts f and p since the argument follows for both filtered and predicted

estimates) in terms of § and writing,
0 2
wi(0) = E(C;) — ZVar(Ci) +O(97).

The above equation shows that for # = 0, we have the risk-neutral case (i.e., the conventional
Kalman filter). When § > 0, we seek to maximize Eeacp(—%Ci), which is convex and decreasing

in C;. Such a criterion is termed risk-seeking (or optimistic) since larger weights are on small
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values of C;, and hence we are more concerned with the frequent occurrence of moderate values
of C; than with the occasional large values. When 8 < 0, we seek to minimize Eeacp(—%Ci),
which is convex and increasing in C;. Such a criterion is termed risk-averse (or pessimistic)
since large weights are on large values of C;, and hence we are more concerned with the
occasional occurence of large values than with the frequent occurence of moderate ones.

The relationship between the risk-sensitive criterion and the H® criterion was first noted
in [27] and has been further discussed in [16, 19]. It may be formally stated as follows: In
the risk-averse case 8 < 0, the risk-sensitive optimal filter with parameter 6 is given by the
central H* filter with level v = 97 5. Tn particular, there is a certain smallest value of the
risk-sensitivity parameter 8, after which the minimizing property of y;(6) breaks down, and it

is this value that yields the optimal central H*° filter with ., = —971/2,

8.2 Risk-sensitive Adaptive Filtering

Using the discussion of Section 8.1, we are now in a position to state the risk-sensitive results

for LMS and normalized LMS.

Theorem 9 (Normalized LMS and Risk-sensitivity) Consider the state-space model (50)
where the w and {v;} are independent Gaussian random variables with means w)_y and 0, and

variances pl and I, respectively. The solution to the following minimization problem

1
min py(#) = min (2109 [Eexp(—C ),]) (53)
{Z51} g {Z51} 2 g

where Cy = 3772, €% €1, and the expectation is taken over w and {v;} subject to observing

{do,dy,...,d;}, is given by the normalized LMS algorithm
Ziji = hiwy,

and

. . phi

W41 = W + m(dl—l—l — hz—l—lﬁ)h) , QI)|_1. (54)
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Theorem 10 (LMS and Risk-sensitivity) Consider the state-space model (50) where the
w and {v;} are independent Gaussian random variables with means w)_, and 0, and variances

wl and I, respectively. Suppose moreover, that the {h;} are exciting, and that

0 < p <inf L
mr ——.
P ke

Then the solution to the following minimization problem

1
min p, () = min (210 [Eeac -C ,]) 55
{éj}up() min | 2log P(5Cp) (55)

where C, = 3772, €, i€p,i; and the expectation is taken over w and {v;} subject to observing

{do,dy,...,d;i_1}, is given by the LMS algorithm
Zi = hyw;—1,

and

W)y = W)y + phi(d; = hiby_y) W (56)

Before closing this section we should remark that the central H*® filters possess other
properties in addition to the one described above. In the game theoretic formulation of H*
estimation, the central filter corresponds to the solution of the game [28]. Morever, among
all H* estimators that achieve a certain level «, the central solution can be shown to be the

maximum entropy [21] solution. However, we shall not pursue these directions here.

9 Further Remarks

In addition to yielding a new interpretation for the LMS algorithm and providing it with a
rigorous basis, the results described in this paper have lent themselves to various generalizations
and have allowed the authors to obtain several new results. We close this paper by listing some
of these ideas and results here. We should also mention that we believe the framework presented
in this paper provides a new way of looking at adaptive algorithms and should be worthy of

further scrutiny.
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Figure 6: The criterion (55) is termed risk averse (or pessimistic) since the cost function
exp(C,/2) is very large for large values of C,. Hence we are more concerned with the occasional
occurence of large values of C, than with the frequent occurrence of moderate ones. This fact
corresponds well with the intuition gained from the H™ optimality of the LMS algorithm. We
have also plotted C,/2 (the dashed line) to compare the two cost functions, since the RLS

algorithm minimizes the expected value of C,/2.

LMS with Time-Varying Learning Rate

In many applications one uses the LMS algorithm with time-varying stepsize (or learning rate),
viz.,

W = Wyi—y + pih (di = hi—q),  ©)—y. (57)

In this case, it is straightforward to show that if the vectors {,ui/zhi} are exciting, and if
pihi kY <1 for all ¢, then the LMS algorithm with time-varying stepsize solves the following

minimax problem:
inf  sup Z(Jio Nj|€p7j|2 _
wwehy W= W_1]2 + 37520 pilvs]?

1. (58)

H* Adaptive Filtering

In this paper we have shown that if adaptive filtering for output prediction error is considered
then the central H®-optimal adaptive filter is LMS. It is also possible to consider prediction
of the filter weight vector itself, and for the purpose of coping with time-variations, to consider

exponentially weighted, finite-memory and time-varying adaptive filtering. This results in
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some new adaptive filtering algorithms that may be useful in uncertain and non-stationary

environments (see [29]).

H* Norm Bounds for the RLS Algorithm

In order to compare the robustness of H%-optimal algorithms (such as RLS) with H°-optimal
algorithms (such as LMS) it it useful to obtain H* norm bounds for these algorithms. This
has been done for the RLS algorithm in [20], where it is shown that unlike LMS, the H* norm
of the RLS algorithm depends on the input data {h;} and, roughly speaking, grows linearly in

the parameter pu.

A Time-Domain Feedback Analysis

Using some of the ideas presented here, a time-domain feedback analysis of recursive adaptive
schemes, including gradient-based and Gauss-Newton filters has been developed [30, 31], for
both the FIR and IIR contexts. The analysis highlights an intrinsic feedback structure in terms
of a feedforward lossless or contractive map and a feedback memoryless or dynamic map. The
structure lends itself to analysis via energy conservation arguments and via standard tools
in system theory such as the small gain theorem [32]. It further suggests choices for the
adaptation gains (or step-sizes) in order to enforce a robust performance in the presence of
disturbances (along the lines of H*theory), as well as improve the convergence speed of the

adaptive algorithms.

Nonlinear Problems

The results presented in this paper are for linear adaptive filters and can be somewhat gener-
alized to nonlinear adaptive filters (such as neural networks) if one linearizes these nonlinear
models around some suitable point. Using this approach it can be shown (see [34]) that, for
nonlinear problems, instantaneous-gradient-based algorithms (such as backpropagation [33])
are locally H*-optimal. This means that if the initial estimate of the weight vector is close

enough to its true value, and if the disturbances are small enough, then the maximum energy
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gain from the disturbances to the output prediction errors is arbitrarily close to one. Global
H*>-optimal filters can also be found in the nonlinear case, but they have the drawback of

being infinite-dimensional [35].

10 Conclusion

We have demonstrated that the LMS algorithm is H/* optimal. This result solves a long stand-
ing issue of finding a rigorous basis for the LMS algorithm, and also confirms its robustness.
We find it quite interesting that despite the fact that there has only been recent interest in the
field of H*® estimation, there has existed an H™ optimal estimation algorithm that has been

widely used in practice for the past three decades.
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A A First Principles Proof of the H*>* Optimality of LMS

In this appendix we shall outline a first principles proof of the H® optimality of the LMS
and normalized LMS algorithms that does not require the results of Theorems 1 and 2 on H>
filtering. The proofs rely on some easily verified inequalities. We begin with normalized LMS.

(See also the last section in [4] and [30].)

A.1 The Normalized LMS Algorithm

Recall that in Sec. 5.1, after the statement of Theorem 5, we constructed a disturbance signal

such that for any ¢ > 0,

eI .
P W — W)y + ||v -
1 B 2 2

Since this was just one special disturbance signal, we conclude that if the input vectors are

exciting, we have

Sup T H?szz > Z 1 (1)
wwehy W0 =W [* + (o]

We shall now show that the normalized LMS algorithm achieves one in the above inequality.

This, of course, also shows that v ., = 1. To this end, note that the normalized LMS algorithm

*

Wi = w1+

J d: — haby:
,u_l +h]h;( J J |]—1)7
can, after some rearrangement, be written as
W)j—1 = W) = phi(d; = hjy;).

If we now define w; = w — w);, the above expression allows us to write

p 2 (o] = w7 g b (4 = By | (2)
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[The reason for multiplying both sides by 1~ Y2 will become clear in a moment.] On the other

hand, we may write v; = d; — h;w as
vj = (dj = hjiby;) — hjw;. (3)
Squaring both sides of (2) and (3) and adding the results yields
pH A Lo = T P Ty 4 (L phyh3) (dy = hyiy)*. (4)

Now since the third term on the RHS of the above expression is positive, and since hjw; = €y ;,
we may write
19 2 2 —1)5 |2 2
T LT e e ey T [T R S T (5)

If we now add all inequalities of the form (5) from time j = 0 to time j = ¢, we have

ptw =g P Y [P = T a4 D fep P > D les sl (6)
i=0 i=0

j=0
which in turn implies
Yo lesil?
petw = @y 2+ g o2 T

Thus, for normalized LMS, in the limit as + — oo we have

Yo lesil? B lesll?
sup — e T = o T 2
wwehy MW — @11 [* + 3752 |vj] ptw — b4 |2 + [|o]|

=1, (8)

which is the desired result.

A.2 The LMS Algorithm

The proof for the LMS algorithm follows the exact same lines as the one above. Eq. (2) is now

replaced by
2 M]} = /2 [ﬁ)u_l — phi(d; — hﬂbu_l)} , (9)
and (3) by

vj = (dj = hjibjj1) = hjpjy. (10)
This time we square both sides of (9) and (10) and subtract the results to obtain
p gl = o = gy = by oal® = (L= phih7) (dj = hyiby_1)*. (11)
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Now since we have the bound pu < #, the third term on the RHS is negative, and we can
E)
write
1), 2 2 —115 |2 - 2
T LT e o L =y T (T e S PP (12)
N——
€p.j

The remainder of the proof is now identical to the normalized LMS case.
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