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Abstract

We show that the celebrated LMS �Least�Mean Squares� adaptive algorithm is H�

optimal� The LMS algorithm has been long regarded as an approximate solution to either

a stochastic or a deterministic least�squares problem� and it essentially amounts to updating

the weight vector estimates along the direction of the instantaneous gradient of a quadratic

cost function� In this paper we show that LMS can be regarded as the exact solution to a

minimization problem in its own right� Namely� we establish that it is a minimax �lter� it

minimizes the maximum energy gain from the disturbances to the predicted errors� while

the closely related so�called normalized LMS algorithm minimizes the maximum energy

gain from the disturbances to the �ltered errors� Moreover� since these algorithms are

central H� �lters� they minimize a certain exponential cost function and are thus also

risk�sensitive optimal� We discuss the various implications of these results� and show how

they provide theoretical justi�cation for the widely observed excellent robustness properties

of the LMS �lter�
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� Introduction

Classical methods in estimation theory �such as maximum�likelihood� maximum entropy and

least�squares� require a priori knowledge of the statistical properties of the exogenous signals�

In many applications� however� one is faced with model uncertainties and lack of statistical

information� Therefore� the introduction of the LMS �Least�Mean�Squares� adaptive �lter by

Widrow and Ho� in �	
� came as a signi�cant development for a broad range of engineering

applications since the LMS adaptive linear�estimation procedure requires essentially no advance

knowledge of the signal statisitics ��
� Since this pioneering work� adaptive �ltering techniques

have been widely used to cope with time variations of system parameters and lack of a priori

statistical information ��� �
�

The LMS algorithm was originally conceived as an approximate recursive procedure that

solves the following least�squares adaptive problem� given a sequence of � � n input row

vectors fhig� and a corresponding sequence of desired responses fdig� �nd an estimate of an

n � � column vector of weights w� such that the sum of squared errors
PN

i��jdi � hiwj
� is

minimized� The LMS solution recursively updates estimates of the weight vector along the

direction of the instantaneous gradient of the squared error�

Algorithms that exactly minimize the sum of squared errors� for every value of N � are also

known and are generally referred to as recursive least squares �RLS� algorithms �see� e�g�� ���

�
�� Although such exact least�squares algorithms have various desirable optimality properties

�such as yielding maximum likelihood estimates� under certain statistical assumptions on the

signals �such as temporal whiteness and Gaussian disturbances�� they are computationally

more complex� and are less robust to disturbance variation than the simple LMS algorithm�

For example� it has been observed that the LMS algorithm has better tracking capabilities

than the RLS algorithm in the presence of nonstationary inputs ��
�

In this paper we show that the superior robustness properties of the LMS algorithm are due

to the fact that it is a minimax algorithm� or more speci�cally an H� optimal algorithm� We

shall de�ne precisely what this means in Section �� Here we note only that recently� following

some pioneering work in robust control theory �see� e�g�� ��
� there has been an increasing
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interest in minimax estimation �see �

����
 and the references therein� with the belief that the

resulting so�called H� algorithms will be more robust and less sensitive to model uncertainties

and parameter variations� The similarity between the objectives of adaptive �ltering and H�

estimation suggests that there should be some connection between the two� and indeed our

result on the H� optimality of the LMS algorithm provides such a connection�

In addition to giving more insight into the inherent robustness of the LMS algorithm and

why it has found such wide applicability in a diverse range of problems� our result provides

LMS with a rigorous basis and furnishes a minimization criterion that has long been missing�

To be more precise� using some well�known results in H� estimation theory� we show that

the LMS algorithm is the so�called central a priori H��optimal �lter� while the closely related

normalized LMS algorithm is the central a posteriori H��optimal �lter�

The H� optimality property of LMS is a deterministic characterization of the algorithm�

It is also possible to give a stochastic characterization of this algorithm under the assumptions

of temporal whiteness and Gaussian disturbances� In this case� we show that LMS minimizes

the expected value of a certain exponential cost function� and is therefore risk�sensitive optimal

�in the sense of Whittle ��

��

It is ironic that the LMS algorithm is not H� optimal� contrary to what its name suggests�

but that it rather satis�es a minimax criterion� Moreover� in most H� problems� the optimum

solution has not been determined in closed form � what is usually determined is a certain

type of suboptimal solution� We show� however� that for the adaptive problem at hand� the

optimum solution can be determined�

The remainder of the paper is organized as follows� In Sec� � we introduce the problem

of adaptive �ltering and motivate the question of the robustness of estimators� In order to

address the robustness question� we introduce the H� approach in Sec� � and formulate the

H� estimation problem as one that minimizes the maximum energy gain from the disturbances

to the estimation errors� Sec� � studies the general problem of state�space H� estimation and�

in particular� gives expressions for the H� a posteriori and a priori �lters� as well as their

full parametrization� The main result is given in Sec� � where we formulate the H� adaptive
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�ltering problem as a state�space problem and use the results of Sec� � to show that the

normalized LMS algorithm is the central a posteriori H� optimal adaptive �lter� and that if

the learning rate is chosen appropriately� LMS is the central a priori H� optimal adaptive

�lter� In both cases� the LMS and normalized LMS algorithms guarantee that the energy of

the estimation errors never exceeds the energy of the disturbances� Sec� 
 then considers a

simple example that demonstrates the robustness of LMS compared to RLS� and also brie�y

discusses the merits of being H��optimal� In Sec� � the full parametrization of all H�

optimal adaptive �lters is given� and in Sec� � we show that LMS and normalized LMS have

the additional property of being risk�sensitive optimal� Sec� 	 mentions some further results

using the approach and ideas of this paper and Sec� �� provides the conclusion�

� Adaptive Filtering

As shown in Fig� �� suppose we observe an output sequence fdig that obeys the following

model�

di � hiw � vi� i � � ���

where hi �

�
hi� hi� � � � hin

�
is a known ��n input vector� w �

�
w� w� � � � wn

�T
is

an unknown n�� weight vector that we intend to estimate� and vi is an unknown disturbance�

which may also include modelling errors� We shall not make any assumptions on the noise

sequence fvig �such as stationarity� whiteness� Gaussian distributed� etc��� We denote the

estimate of the weight vector using all the information available up to time i by

�wji � F�d�� d�� � � � � di� h�� h�� � � �hi��

��� Least�Squares Methods

There are a variety of choices for �wji� but the most widely used estimate is one that satis�es

the following least�squares �or H�� criterion�

min
w

�
����jw � �wj��j

� �
iX

j��

jdj � hjwj
�

�
� � ���

�



��
��
��
��

��
��

��
��� �

� �

�

��

�

� �

hi� h�� hi� hin

vi

di 	 hiw 
 viw� w� w� wn

Figure �� The model for adaptive �ltering�

where �wj�� is the initial estimate of w� and � � � represents the relative weight that we give

to our initial estimate compared to the �sum of squared�error� term
Pi

j�� jdj � hjwj
��

The exact solution to the above criterion is the RLS �Recursive Least Squares� algorithm�

�wji � �wji�� � kp�i�di � hi �wji��� � �wj�� ���

with kp�i �
Pih�i

��hiPih�i
and Pi satisfying the Riccati recursion

Pi�� � Pi �
Pih

�
i hiPi

� � hiPih
�
i

� P� � �I� ���

The RLS algorithm is used because under suitable stochastic assumptions it has the fol�

lowing two properties�

�a� If w � �wj�� and the fvjg are assumed to be zero�mean� uncorrelated and� in the case of

the fvjg� temporally white random variables with variances �I and �� respectively� then

the RLS algorithm minimizes the expected prediction error energy�

E
iX

j��

jhjw � hjwj��j
��

�b� If� in addition to the assumptions of part �a�� w � �wj�� and the fvjg are assumed to be

jointly Gaussian� then the cost function in ��� becomes the negative of the log�likelihood

function and RLS yields the maximum�likelihood estimate of the weight vector w�

��� Gradient�Based Methods

In gradient�based algorithms� instead of exactly solving the least�squares problem ���� the

estimates of the weight vector are updated along the negative direction of the instantaneous
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gradient of the cost function appearing in ���� Two examples are the LMS �Least�Mean�

Squares� ��


�wji � �wji�� � �h�i �di � hi �wji��� � �wj�� ���

and the normalized LMS

�wji � �wji�� �
�

� � �hih
�
i

h�i �di � hi �wji��� � �wj�� �
�

algorithms� Note that in the case of LMS the gain vector kp�i in RLS �which had to be

computed by propagating a Riccati equation� has been simply replaced by �h�i � Likewise if we

compare normalized LMS with the RLS algorithm� we see that the di�erence is that instead

of propagating the matrix Pi via the Riccati recursion we have simply set Pi � �I � for all

i� For this reason the LMS and normalized LMS algorithms have long been considered to be

approximate least�squares solutions and were thought to lack a rigorous basis�

We should note here that although we have introduced the LMS algorithm as an approxi�

mate deterministic least�squares solution� it is also possible to motivate it as an approximate

stochastic least�squares solution �see ��� �
��

��� The Question of Robustness

We saw that under suitable stochastic assumptions� the RLS algorithm has certain desirable

optimality properties� namely it minimizes the expected prediction error energy and yields

maximum�likelihood estimates� However� the question that begs itself is what the performance

of such an estimator will be if the assumptions on the disturbances are violated� or if there are

modelling errors in our model so that the disturbances must include the modelling errors� In

other words

� is it possible that small disturbances and modelling errors may lead to large estimation

errors�

Obviously� a nonrobust algorithm would be one for which the above is true� and a robust

algorithm would be one for which small disturbances lead to small estimation errors� More

explicitly� in the adaptive �ltering problem� where we assume an FIR model� the true model may






be IIR� but we neglect the tail of the �lter response since its components are small� However�

unless one uses a robust estimation algorithm� it is conceivable that this small modelling error

may result in large estimation errors�

The problem of robust estimation is thus an important one� As we shall see in the next

section� the H� estimation formulation is an attempt at addressing this question� The idea is

to come up with estimators that minimize �or in the suboptimal case� bound� the maximum

energy gain from the disturbances to the estimation errors� This will guarantee that if the

disturbances are small �in energy� then the estimation errors will be as small as possible �in

energy�� no matter what the disturbances are� In other words the maximum energy gain is

minimized over all possible disturbances� The robustness of the H� estimators arises from

this fact� Since they make no assumption about the disturbances� they have to accomodate

for all conceivable disturbances� and are thus over�conservative�

� The H� Approach

We begin with the de�nition of the H� norm of a transfer operator� As will presently become

apparent� the motivation for introducing the H� norm is to capture the worst case behaviour

of a system�

De�nition � �The H� Norm� Let h� denote the vector space of square�summable complex�

valued causal sequences with inner product � ffkg� fgkg � �
P�

k�� f
�
k gk � where � denotes

complex conjugation� Let T be a transfer operator that maps an input sequence fuig to an

output sequence fyig� Then the H� norm of T is de�ned as

kTk� � sup
u ����u�h�

kyk�
kuk�

where the notation kuk
�
denotes the h��norm of the causal sequence fukg� viz�� kuk�

�
�

P�
k�� u

�
kuk�

Note that the H� norm may thus be regarded as the maximum energy gain from the input

u to the output y�
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��� Formulation of the H� Adaptive Filtering Problem

Recall that �wji � F�d�� � � �di� h�� � � �hi� denotes the estimate of the weight vector using all

the information available from time � to time i� In this paper we shall be interested in the

following two estimation errors� the �ltered �or a posteriori� error

ef�i � hiw � hi �wji� ���

and the predicted �or a priori� error

ep�i � hiw � hi �wji��� ���

�Note that in the above errors we compare the estimates hi �wji and hi �wji�� with the uncorrupted

output hiw of model ��� and not with the observation di�


�

�

�

vi

Tp�F	

ep�i 
 hiw � hi �wji��

������w � �wj��	

Figure �� Transfer operator from the unknown disturbances f������w � �wj���� fvjg
�
j��g to the

prediction errors fep�jg
�
j��� Likewise for Tf �F��

Any choice of estimation strategy F��� will induce transfer operators Tf �F� and Tp�F� that

map the unknown disturbances f������w � �wj���� fvjg
�
j��g to the estimation errors fef�jg

�
j��

and fep�jg
�
j��� respectively� See Fig� ��

In the H� framework� robustness is ensured by minimizing the maximum energy gain from

the disturbances to the estimation errors� This leads to the following problem�

Problem � �H� Adaptive Filtering Problem� Find an H��optimal estimation strategy

�wji � Ff �d�� � � � � di� h�� � � � � hi�� that minimizes kTf�F�k�� and an H��optimal strategy �wji �

Fp�d�� � � � � di� h�� � � � � hi�� that minimizes kTp�F�k�� Also obtain the resulting

��f�opt � inf
F

kTf�F�k�� � inf
F

sup
w�v�h�

kefk
�

�

���jw � �wj��j� � kvk��
� �	�

�



and

��p�opt � inf
F

kTp�F�k�� � inf
F

sup
w�v�h�

kepk
�

�

���jw � �wj��j� � kvk��
� ����

where jw � �wj��j
� � �w� �wj���

T �w � �wj����

In order to solve the above H� adaptive �ltering problem we shall begin by reviewing some

basic results from state�space H� estimation theory� Although it is possible to give a ��rst

principles� derivation of the solution to the above H� adaptive �ltering problem �and we shall

indeed do so in the Appendix�� some study of the more general state�space estimation problem

has its own merits� and moreover allows for various generalizations of the results presented

here�

� State�Space H� Estimation

We �rst give a brief review of some of the results in H� estimation theory using the notation

of the companion papers ���� �	
� The reader is also referred to �

����
 and the references

therein for earlier results and alternative approaches�

��� Formulation of the State�Space H� Problem

Consider the time�variant state�space model

�	

	�

xi�� � Fixi � Giui� x�

yi � Hixi � vi� i � �
����

where Fi � Cn�n� Gi � Cn�m and Hi � Cp�n are known matrices� x�� fuig� and fvig are

unknown quantities and yi is the measured output� We can regard vi as a measurement noise

and ui as a process noise or driving disturbance� Let zi be linearly related to the state xi via

a given matrix Li � C
q�n� viz��

zi � Lixi�

We shall be interested in the following two cases� Let �ziji � Ff�y�� y�� � � � � yi� denote an

estimate of zi given observations fyjg from time � up to and including time i� and �zi �
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�

�

�

�

�

�

� � f�zj � Ljxjg
i
j��

f�zjjj � Ljxjg
i
j��

Tp�i�Fp	

Tf�i�Ff	fujg
i
j��

fvjg
i
j��

fujg
i
j��

�����
� �x� � �x�	

fvjg
i
j��

�����
� �x� � �x�	

Figure �� Transfer matrices from disturbances to �ltered and predicted estimation errors�

Fp�y�� y�� � � � � yi��� denote an estimate of zi given observations fyjg from time � to time i� ��

We then have the �ltered error

ef�i � �ziji � Lixi� ����

and the predicted error

ep�i � �zi � Lixi� ����

Let Tf�i�Ff� �Tp�i�Fp�� denote the transfer operator that maps the unknown disturbances

f�
����
� �x���x��� fujg

i
j��� fvjg

i
j��g to the �ltered �predicted� errors fef�jg

i
j�� � fep�jg

i
j���� where

�x� denotes an initial guess of x�� and �� is a given positive de�nite matrix re�ecting a priori

knowledge of how close x� is to the initial guess �x�� See Figure �� The �so�called �nite�horizon�

H� estimation problem can now be stated as follows�

Problem � �Optimal H� Problem� FindH��optimal estimation strategies �ziji � Ff �y�� y�� � � � � yi�

and �zi � Fp�y�� y�� � � � � yi��� that respectively minimize kTf�i�Ff�k� and kTp�i�Fp�k�� and ob�

tain the resulting

��f�opt � inf
Ff
kTf�i�Ff�k�� � inf

Ff
sup

x��u�h��v�h�

Pi
j�� jef�ij

�

�x� � �x�����
���x� � �x�� �

Pi
j�� juj j

� �
Pi

j�� jvj j
�

����

��



and

��p�opt � inf
Fp
kTp�i�Fp�k

�
� � inf

Fp
sup

x��u�h� �v�h�

Pi
j�� jep�ij

�

�x� � �x�����
���x� � �x�� �

Pi
j�� juj j

� �
Pi

j�� jvj j
�
�

����

Note that the in�mum in ���� is taken over all strictly causal estimators Fp� whereas in

���� the estimators Ff are causal since they have additional access to yi� This is relevant since

the solution to the H� problem� as we shall see� depends on the structure of the information

available to the estimator�

The above problem formulation shows that H� optimal estimators guarantee the smallest

estimation error energy over all possible disturbances of �xed energy� H� estimators are thus

over conservative� which re�ects in a better robust behaviour to disturbance variation�

A closed form solution of the optimal H� problem is available only for some special cases

�one of which is the adaptive �ltering problem as we show here�� and a simpler problem results

if one relaxes the minimization condition and settles for a suboptimal solution�

Problem � �Sub�optimal H� Problem� Given scalars �f � � and �p � �� �nd estima�

tion strategies �ziji � Ff �y�� y�� � � � � yi� and �zi � Fp�y�� y�� � � � � yi��� that respectively achieve

k Tf�i�Ff� k�� �f and k Tp�i�Fp� k�� �p� This clearly requires checking whether �f � �f�o

and �p � �p�o�

The above two problem formulations are for the �nite horizon case� In the in�nite horizon

case� to guarantee that kTf�F�k� � �f and kTp�F�k� � �p we need to ensure kTf�i�F�k� � �f

and kTp�i�F�k� � �p for all i�

��� The H� Filters

We now brie�y review the solutions of the H� �ltering problems using the notation of ���� �	
�

Theorem � �The H� Aposteriori Filter� For a given � � �� if the Fi are nonsingular

then an estimator with kTf�ik� � � exists if� and only if�

P��j � H�
jHj � ���L�jLj � �� j � �� � � � � i ��
�

��



where P� � ��� and Pj satis�es the Riccati recursion

Pj�� � FjPjF
�
j � GjG

�
j �

�
L�j H�

j

�
R��e�j

�
�� Lj

Hj

�

�PjF

�
j ����

with

Re�j �

�
�� ���I 	

	 I

�

��

�
�� Lj

Hj

�

�Pj

�
L�j H�

j

�
�

If this is the case� then one possible H� �lter with level � is given by

�zjjj � Lj �xjjj �

where �xjjj is recursively computed as

�xj��jj�� � Fj �xjjj � Kf�j���yj�� �Hj��Fj �xjjj�� �x��j�� � initial guess ����

and

Kf�j�� � Pj��H
�
j���I � Hj��Pj��H

�
j���

��� ��	�

Theorem � �The H� Apriori Filter� For a given � � �� if the Fi are nonsingular then an

estimator with kTp�ik� � � exists if� and only if�

�P��j � P��j � ���L�jLj � �� j � �� � � � � i ����

where Pj is the same as in Theorem �� If this is the case� then one possible H� �lter with

level � is given by

�zj � Lj �xj � ����

�xj�� � Fj �xj � Kp�j�yj �Hj �xj�� �x� � initial guess ����

where

Kp�j � Fj
�PjH

�
j �I � Hj

�PjH
�
j ���� ����

��



Note that the above two estimators bear a striking resemblance to the celebrated Kalman

�lter� �	

	�

�xj�� � Fj �xj � FjPjH
�
j �I � HjPjH

�
j ����yj �Hj�xj�

Pj�� � FjPjF
�
j � GjG

�
j � FjPj�I � HjPjH

�
j ���PjF

�
j

����

and that the only di�erence is that the Pj of equation ��	�� and �Pj of equation ����� satisfy

Riccati recursions that di�er with that of ����� However� as � �	� the Riccati recursion ����

collapses to the Kalman �lter recursion ����� This suggests that the H� norm of the Kalman

�lter may be quite large� indicating that it may have poor robustness properties�

It is also interesting that the structure of the H� estimators depends� via the Riccati

recursion ����� on the linear combination of the states that we intend to estimate �i�e�� the Li��

This is as opposed to the Kalman �lter� where the estimate of any linear combination of the

state is given by that linear combination of the state estimate� Intuitively� this means that the

H� �lters are speci�cally tuned towards the linear combination Lixi�

Note also that condition ���� is more stringent than condition ��
�� indicating that the

existence of an a priori �lter of level � implies the existence of an a posteriori �lter of level ��

but not necessarily vice versa�

We further remark that the �lter of Theorem � �and Theorem �� is one of many possible

�lters with level �� A full parametrization of all estimators of level � are given by the following

Theorems� �For proofs see ��	
��

Theorem � �All H� Aposteriori Estimators� AllH� a posteriori estimators that achieve

a level �f �assuming they exist	 are given by

�zjjj � Lj �xjjj � ���fI � Lj�P
��
j � H�

jHj�
��L�j 


�
� ����

Sj
�
�I � HjPjH

�
j �

�
� �yj �Hj �xjjj�� � � � � �I � H�P�H

�
��

�
� �y� �H��x�j��

�

where �xjjj satis�es the recursion

�xj��jj�� � Fj �xjjj � Kf�j���yj�� �Hj��Fj �xjjj��Kc�j��zjjj � Lj �xjjj� ��
�

with Kf�j�� the same as in Theorem ��

Kc�j � �I � Pj��Hj��H
�
j���

��Fj�P
��
j � HjH

�
j � ���f LjL

�
j �
��L�j � ����

��



and

S�aj� � � � � a�� �

�
����������

S��a��

S��a�� a��

���

Sj�aj � � � � � a��

�









�

is any �possibly nonlinear	 contractive causal mapping� i�e��

kX
j��

jSj�aj � � � � � a��j
� �

kX
j��

jaj j
� for all k � �� �� � � � � i�

Theorem 
 �All H� Apriori Estimators� All H� a priori estimators that achieve a level

�p �assuming they exist	 are given by

�zj � Lj �xj � ���pI � LjPjL
�
j �

�
� ����

Sj
�
�I � Hj��

�Pj��H
�
j���

� �
� �yj�� �Hj���xj���� � � � � �I � H�

�P�H
�
���

�
� �y� �H��x��

�

where

�xk � �xk � PkL
�
k����pI � LkPkL

�
k�����zk � Lk�xk�� ��	�

�xj satis�es the recursion

�xj��jj � Fj �xjjj�� � FjPj

�
L�j H�

j

�
R��e�j

�
�� �zj � Lj �xjjj��

yj �Hj �xjjj��

�

� � ����

with Pj� �Pj and Re�j given by Theorem 
� and S is any �possibly nonlinear	 contractive causal

mapping�

Note that although the �lters obtained in Theorems � and � are linear� the full parametriza�

tion of all H� �lters with level � is given by a nonlinear causal contractive mapping S� The

�lters of Theorems � and � are known as the central �lters and correspond to S � �� These

central �lters have a number of other interesting properties� They correspond� as we shall see

in a subsequent section� to the risk�sensitive optimal �lter ��

� and can be shown to be the

maximum entropy �lter ���
�

��



� Main Result

Let us �rst note that the basic equation of the adaptive �ltering model ��� can be rewritten

in the following state�space form��	

	�

xi�� � xi

di � hixi � vi

x� � w� ����

This is a relevant step since it reduces the adaptive �ltering problem to an equivalent state�

space estimation problem� This point of view has been recently proposed in ��
 where a uni�ed

square�root�based derivation of exponentially�weighted RLS adaptive algorithms is obtained

by reformulating the original adaptive problem as a state�space linear least�squares estimation

problem and then applying various algorithms from Kalman �lter theory� Here we shall instead

apply the H� theory to the state�space model ���� and show that the optimum a priori and

a posteriori H� �lters reduce to the LMS and normalized LMS algorithms� respectively�

At this point we need one more de�nition�

De�nition � �Exciting Inputs� The input vectors hi are called exciting if� and only if�

lim
N��

NX
i��

hih
�
i � 	

��� The Normalized LMS Algorithm

We �rst consider the a posteriori �lter and show that it collapses to the normalized LMS

algorithm�

Theorem � �Normalized LMS Algorithm� Consider the state�space model ���	� and sup�

pose we want to minimize the H� norm of the transfer operator Tf�F� from the unknowns

������w� �wj��� and fvjg
�
j�� to the �ltered error fef�j � �zjjj �hjwg

�
j��� If the input data fhjg

is exciting� then the minimum H� norm is

�f�opt � ��

In this case� the central optimal H� a posteriori �lter is

�zjjj � hj �wjj�

��



where �wjj is given by the normalized LMS algorithm with parameter ��

�wjj�� � �wjj �
�h�j��

� � �hj��h
�
j��

�dj�� � hj�� �wjj�� �wj�� � initial guess� ����

Intuitively it is not hard to convince oneself that �f�opt cannot be less than one� To this

end� suppose that the estimator has chosen some initial guess �wj��� Then one may conceive of

a disturbance that yields an observation that coincides with the output expected from �wj���

i�e� �

hi �wj�� � hiw � vi � di�

In this case one expects that the estimator will not change its estimate of w� so that �wji � �wj��

for all i� Thus the �ltered error is

ef�i � hiw � hi �wji � hiw � hi �wj�� � �vi�

and the ratio in �	� becomes

kvk�

���jw� �wj��j� � kvk�
�

khi�w� �wj���k
�

���jw � �wj��j� � khi�w � �wj���k�
�

When the fhig are exciting� for any � � �� we can �nd a weight vector w and an integer N

such that
PN

i�� jhi�w � �wj���j
� �

jw� �wj�� j
�

�� � With these choices we have

PN
i�� jhi�w � �wj���j

�

���jw� �wj��j� �
PN

i�� jhi�w � �wj���j�
� �� ��

so that the ratio in �	� can be made arbitrarily close to one�

The surprising fact though is that �f�opt is exactly one and that the normalized LMS al�

gorithm achieves it� What this means is that normalized LMS guarantees that the energy of

the �ltered error will never exceed the energy of the disturbances� This is not true for other

estimators� For example� in the case of the recursive least�squares �RLS� algorithm� one can

come up with a disturbance of small energy that will yield a �ltered error of large energy ���
�

�




Proof of Theorem �� We apply the aposteriori �lter of Theorem � to the state�space model

���� where Fi � I � Gi � �� Hi � hi� and Li � hi� Thus the Riccati equation simpli�es to

Pi�� � Pi � Pi

�
h�i h�i

��	

	�
�
�� ���I 	

	 I

�

��

�
�� hj

hj

�

�Pi

�
h�i h�i

��	�
	�
�� �
�� hi

hi

�

�Pi�

which� using the matrix inversion lemma ���
� implies that

P��i�� � P��i �

�
h�i h�i

���� ����I �

� I

�

�
�
�� hi

hi

�

�

� P��i � ��� ����h�i hi�

Consequently� starting with P��� � ���I � we get

P��i�� � ���I � ��� ����
iX

j��

h�jhj � ����

Now we need to check the existence condition ��
� and �nd the optimum �f�opt� It follows from

the above expression for P��i�� that we have

P��i�� � H�
i��Hi�� � ���L�i��Li�� � ���I � ��� ����

i��X
j��

h�jhj � ����

Suppose � � � so that �� ��� � �� Since the fhjg are exciting� we conclude that for some k�

and for large enough i� we must have

i��X
j��

jhjkj
� �

���

��� � �
�

This implies that the kth diagonal entry of the matrix on the right hand side of ���� is negative�

viz��

��� � ��� ����
i��X
j��

jhjk j
� � ��

Consequently� P��i�� �H�
i��Hi������L�i��Li�� cannot be positive�de�nite� Therefore� �f�opt �

�� We now verify that �f�opt is indeed �� For this purpose� we note that if we consider � � �

then from equation ���� we have Pi � �I � � for all i and the existence condition is satis�ed�

If we now write the a posteriori �lter for �f�opt � �� with Pi � �I � we get the desired so�called

normalized LMS algorithm �����

��



��� The LMS Algorithm

We now apply the a priori H���lter and show that it collapses to the LMS algorithm�

Theorem 
 �LMS Algorithm� Consider the state�space model ���	� and suppose we want

to minimize the H� norm of the transfer operator Tp�F� from the unknowns ������w� �wj���

and fvjg
�
j�� to the predicted error fep�j � �zj �hjwg

�
j��� If the input data fhjg is exciting� and

� � � � inf
i

�

hih�i
����

then the minimum H� norm is

�p�opt � ��

In this case� the central optimal a priori H� �lter is

�zj � hi �wjj��

where �wjj�� is given by the LMS algorithm with learning rate �� viz��

�wjj � �wjj�� � �h�j �dj � hj �wjj��� � �wj��� ��
�

Proof� The proof is similar to that for the normalized LMS case� For � � �� the matrix �Pi of

Theorem � cannot be positive�de�nite� For � � �� we get Pi � �I � � for all i� and

�P��i � P��i � L�iLi

� ���I � h�i hi

It is straightforward to see that the eigenvalues of �P��i are

f���� ���� ���� ���� ��� � hih
�
i g�

Thus �P��i is positive de�nite if� and only if� ���� is satis�ed� which leads to �p�opt � �� Writing

the H� a priori �lter equations for � � � yields

�wji � �wji�� � �Pih
�
i �I � hi �Pih

�
i �
���di � hi �wji���

��



� �wji�� � �Pi�I � h�i hi �Pi�
��h�i �di � hi �wji���

� �wji�� � � �P��i � h�i hi�
��h�i �di � hi �wji���

� �wji�� � �h�i �di � hi �wji����

The above result indicates that if the learning rate � is chosen according to ����� then LMS

ensures that the energy of the predicted error will never exceed the energy of the disturbances�

It is interesting that we have obtained an upper bound on the learning rate � that guarantees

this H� optimality� since it is a well known fact that LMS behaves poorly if the learning rate

is chosen too large� It is also interesting to compare the bound in ���� with the bounds studied

in ��
 and ���
�

We further note that if the input data is not exciting� then
P�

i�� h
�
ihi will have a �nite

limit� and the minimum H� norm of the a posteriori and a priori �lters will be the smallest

� that ensures

���I � ��� ����
�X
i��

h�i hi � ��

This will in general yield �opt � �� and Theorems � and � can be used to write the optimal

�lters for this �opt� In this case the LMS and normalized LMS algorithms will still correspond

to � � �� but will now be suboptimal�

� An Illustrative Example

To illustrate the robustness of the LMS algorithm we consider a special case of model �����

where hi is now a scalar that randomly takes on the values �� and ���

Using the LMS algorithm we can write the following state�space model for the predicted

error ep�i � hixi � hi�xi�

�	

	�

�xi�� � ��� �jhij
���xi � �h�i vi � ��� ���xi � �hivi

ep�i � hi�xi

� �x� � w � �x�� ����

where �xi � xi� �xi� and where we have used the fact that the hi have magnitude one� Assuming

we have observed N points of data� we can then use ���� to write the operator� Tlms�N���� that

�	



maps the disturbances f��
�
� �x�� fvig

N��
i�� g to the fep�ig

N��
i�� �

�
�������

ep��

ep��

���

ep�N��

�






�
�

�
�����������

�
�

� h� � � � � � �

�
�

� ��� ��h� ��h�h� � � � � �

�
�

� ��� ���h� ����� ��h�h� ��h�h� � � � �

���
���

���
� � �

���

�
�

� ��� ��N��hN�� ����� ��N��hN��h� ����� ��N��hN��h� � � � ��hN��hN��

�










�

� �z �
Tlms�N ���

�
�������

�� �

� �x�

v�

���

vN��

�






�
�

�
��

Suppose now we use the RLS algorithm �viz� the Kalman �lter� to estimate the states in

����� i�e��

�xi�� � �xi � kp�i�di � hi�xi�

where kp�i �
pih

�
i

��pijhij�
and

pi�� � pi �
jhij

�p�i
� � pijhij�

� pi �
p�i

� � pi
�

pi
� � pi

� p� � �� ��	�

Then we may write the following state�space model for the RLS predicted error e
�

p�i � hixi �

hi�xi� �	

	�

�xi�� � ��� kp�ihi��xi � kp�ivi

e
�

p�i � hi�xi

� �x� � w � �x�� ����

Now solving ��	� yields

pi �
�

� � i�
� ����

and

kp�i � hipi��� �� kp�ihi �
pi��
pi

� ����

Using ����� ����� and the state�space model ���� we can also write the transfer operator

��
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Figure �� Maximum singular value of transfer operators Tlms�N ��� and Trls�N��� as a function

of N for the values � � �	 and � � ����

Trls�N��� that maps the disturbances to the predicted errors as follows�
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� �z �
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�� �
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�
� ��
�

We now study the maximum singular values of Tlms�N��� and Trls�N��� as a function of

� and N � Note that in this special problem� condition ���� implies that � must be less than

one to guarantee the H� optimality of LMS� Therefore we chose the two values � � �	 and

� � ��� �one greater and one less than � � ��� The results are illustrated in Figure � where

the maximum singular values of Tlms�N ��� and Trls�N ��� are plotted against the number of

observations N � As expected� for � � �	 the maximum singular value of Tlms�N��� remains

constant at one� whereas the maximum singular value of Trls�N��� is greater than one and

increases with N � For � � ��� both RLS and LMS display maximum singular values greater

��



than one� with the performance of LMS being signi�cantly worse�

Figure � shows the worst case disturbance signals for the RLS and LMS algorithms in the

� � �	 case� and the corresponding predicted errors� These worst case disturbances are found

by computing the maximum singular vectors of Trls�����	� and Tlms�����	�� respectively� The

worst case RLS disturbance� and the uncorrupted output hixi� are depicted in Figure �a� As

can be seen from Figure �b� the corresponding RLS predicted error does not go to zero �it

is actually biased�� whereas the LMS predicted error does� The worst case LMS disturbance

signal is given in Figure �c� and as before� the LMS predicted error tends to zero� while the

RLS predicted error does not� The form of the worst case disturbances �especially for RLS�

are quite interesting� they compete with the true output early on� and then go to zero�

The disturbance signals considered in this example are rather contrived and may not happen

in practice� However� they serve to illustrate the fact that the RLS algorithm may have poor

performance even if the disturbance signals have small energy� On the other hand� LMS will

have robust performance over a wide range of disturbance signals�

��� Discussion

In Section ��� we motivated the �f�opt � � result for normalized LMS by considering a distur�

bance strategy that made the observed output di coincide with the expected output hi �wj���

It is now illuminating to consider the dual strategy for the estimator�

Recall that in the a posteriori adaptive �ltering problem the estimator has access to obser�

vations d�� d�� � � � � di and is required to construct an estimate of �ziji of the uncorrupted output

zi � hixi� The dual to the above mentioned disturbance strategy would be to construct an

estimate that coincides with the observed output� viz��

�ziji � di� ����

The corresponding �ltered error is�

ef�i � �ziji � hixi � di � hixi � vi�

��
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Figure �� Worst case disturbances and the corresponding predicted errors for RLS and LMS� �a	

The solid line represents the uncorrupted output hixi and the dashed line represents the worst

case RLS disturbance� �b	 The dashed line and the dotted line represent the RLS and LMS

predicted errors� respectively� for the worst case RLS disturbance� �c	 The solid line represents

the uncorrupted output hixi and the dashed line represents the worst case LMS disturbance� �d	

The dashed line and the dotted line represent the RLS and LMS predicted errors� respectively�

for the worst case LMS disturbance�
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Thus the ratio in �	� can be made arbitrarily close to one� and the estimator ���� will achieve

the same �f�opt � � that the normalized LMS algorithm does�

The fact that the simplistic estimator ���� �which is obviously of no practical use� is an

optimal H� aposteriori �lter seems to question the very merit of being H� optimal� A �rst

indication towards this direction may be the fact that the H� estimators that achieve a certain

level � are nonunique� In our opinion� the property of being H� optimal �i�e� � of minimizing

the energy gain from the disturbances to the errors� is a desirable property in itself� The high

sensitivity of the RLS algorithm to di�erent disturbance signals� as illustrated in the example of

Section 
� clearly indicates the desirability of the H� optimality property� However� di�erent

estimators in the set of all H� optimal estimators may have drastically di�erent behaviour

with respect to other desirable performance measures�

In Section � we develop the full parametrization of all H� optimal a posteriori and a

priori adaptive �lters� and show how to obtain ���� as a special case of this parametrization�

Moreover� it can be shown �see ���
� that among all H��optimal a posteriori �lters the �lter

���� has the worst H� �or� roughly speaking� average� performance� Thus it is the least

desirable H��optimal �lter with respect to an H� criterion� On the other hand� as indicated

in Theorems � and 
� the LMS and normalized LMS algorithms correspond to the so�called

central �lters� These central �lters have other desirable properties that we discuss in Section

�� they are risk�sensitive optimal and can also be shown to be maximum entropy�

The main problem with the estimator ���� is that it makes absolutely no use of the state�

space model ����� We should note that it is not possible to come up with such a simple minded

estimator in the a priori case� indeed as we shall see in the next section� the a priori estimator

corresponding to ���� is highly nontrivial� The reason seems to be that since in the a priori case

one deals with predicted error energy� it is inevitable that one must make use of the state�space

model ���� in order to construct an optimal prediction of the next output� Thus in the a priori

case� the problems arising from such unreasonable estimators such as ���� are avoided�

��



� All H� Adaptive Filters

In Section 
�� we came up with an alternative optimal H� a posteriori �lter� We now use the

results of Theorems � and � to parametrize all optimal H� a priori and a posteriori �lters�

Theorem � �All H� Aposteriori Adaptive Filters� If the input date fhig is exciting� all

H� optimal aposteriori adaptive �lters that achieve �f�opt � � are given by

�zjjj � hj �wjj � �� � �hjh
�
j �
� �

�Sj
�
�� � �hjh

�
j �

�
� �dj � hj �wjj�� � � � � �� � �h�h

�
��

�
� �d� � h� �wj��

�

����

where �wjj satis�es the recursion

�wjj�� � �wj �
�h�j��

� � �hj��h
�
j��

�dj�� � hj�� �wjj��
�h�j

� � �hj��h
�
j��

��zjjj � hj �wjj�� �wj�� ��
�

and S is any �possibly nonlinear	 contractive causal mapping�

Proof� Simply restating the result of Theorem � for the special case Fj � I � Gj � �� Hj � hj

and Lj � hj � and using the identity

I � hj�P
��
j � h�jhj�

��h�j � �I � hjPjh
�
j �
���

along with the fact that for the H��optimal a posteriori adaptive �lters we have �f�opt � �

and Pi � �I � yields the desired result�

We can now note the signi�cance of some special choices for the causal contraction S�

�i� S � � � This yields the normalized LMS algorithm�

�ii� S � I � This yields

�zjjj � hj �wjj � �� � �hjh
�
j �
� �

� �� � �hjh
�
j �

�
� �dj � hj �wjj� � dj �

which is the simple minded estimator of Section 
���

�iii� S � �I � This yields

�zjjj � hj �wjj � �� � �hjh
�
j �
� �

� �� � �hjh
�
j �

�
� �dj � hj �wjj� � �hj �wjj � dj �

��



so that the recursion for �wjj becomes

�wjj�� � �wj �
�h�j��

� � �hj��h
�
j��

�dj�� � hj�� �wjj� �
�h�j

� � �hj��h
�
j��

�dj � hj �wjj�� �wj���

Theorem � �All H� Apriori Adaptive Filters� If the input data fhig is exciting� and

� � � � inf i
�

hih
�
i
� then all H� optimal apriori adaptive �lters are given by

�zj � hj �wjj�������hjh
�
j �

�
�Sj

�
��� �hj��h

�
j���

�
� �dj�� � hj�� �wjj���� � � � � ��� �h�h

�
��

�
� �d� � h� �wj���

�
�

����

where

�wjk�� � �wjk�� �
�h�k

�� � �hkh
�
k

��zk � hk �wjk���� ����

�wjj satis�es the recursion

�wjj � �wjj�� � �h�j �dj � hj �wjj���� �h�j ��zj � hj �wjj���� �wj�� ��	�

and S is any �possibly nonlinear	 contractive causal mapping�

Proof� Simply restating the result of Theorem � for the special case Fj � I � Gj � �� Hj � hj

and Lj � hj � and using the fact that for the H��optimal a priori �lter we have �p�opt � ��

Pi � �I and �Pi � �I � h�i hi� yields the desired result� Indeed equations ����� ���� and ��	�

are the corresponding specializations of equations ����� ��	� and ����� respectively�

We once more note the consequences of some special choices of the causal contraction S�

�i� S � � � This yields the LMS algorithm�

�ii� S � I � This yields

�zj � hj �wjj�� � ��� �hjh
�
j�

�
� ��� �hj��h

�
j���

�
� �dj�� � hj�� �wjj����

where �wjj�� and �wjj�� satisfy ���� and ��	�� The above �lter is the a priori adaptive

�lter that corresponds to the simple minded estimator of Section 
��� Note that in this

case the �lter is highly nontrivial�

�




�iii� S � �I � This yields

�zj � hj �wjj�� � ��� �hjh
�
j�

�
� ��� �hj��h

�
j���

�
� �dj�� � hj�� �wjj����

Note that it does not seem possible to obtain a simplistic a priori estimator that achieves

optimal performance�

	 Risk�Sensitive Optimality

In this section we focus on a certain property of the central H� �lters� namely the fact that they

are risk�sensitive optimal �lters� This will give further insight into the LMS and normalized

LMS algorithms� and in particular will provide a stochastic interpretation in the special case

of disturbances that are independent Gaussian random variables�

The risk�sensitive �or exponential cost� criterion was introduced in ���
 and further studied

in ���� �
� ��
� We begin with a brief introduction to the risk�sensitive criterion� For much

more on this subject consult ��

�

	�� The Exponential Cost Function

Although it is straightforward to consider the risk�sensitive criterion in the full generality of

the state�space model of Section �� here we only deal with the special case of our interest� To

this end� consider the state�space model corresponding to the adaptive �ltering problem we

have been studying� �	

	�

xi�� � xi

di � hixi � vi

� x� � w ����

where we now assume that w and the fvig are independent Gaussian random variables with

means �wj�� and zero and covariances �� and I � respectively� As before� we are interested in

the �ltered and predicted estimates �ziji � Ff�d�� d�� � � � � di� and �zi � Fp�d�� d�� � � � � di��� of the

uncorrupted output zi � hixi� The corresponding �ltered and predicted errors are given by

ef�i � �ziji� zi and ep�i � �zi� zi� The conventional Kalman �lter is an estimator that performs

��



the following minimization �see e�g� ���� �

��

min
f�zjg

�
�E iX

j��

e�p�jep�j

�
� � ����

where the expectation is taken over the Gaussian random variables w and fvjg
�
j�� whose joint

conditional distribution is given by�

p�w� v�� � � � � vijd�� � � � � di� 


exp

�
���

�

�
��w � �wj���

����
� �w � �wj��� �

iX
j��

�dj � hjxj�
��dj � hjxj�

�
A
�
� �

and where the symbol 
 stands for  proportional to � In the terminology of ��

� the �lter that

minimizes ���� is known as the risk�neutral �lter�

An alternative criterion that is risk�sensitive has been extensively studied in ���
 � ���
 and

corresponds to the following minimization problem

min
f�zjjjg

�f�i�	� � min
f�zjjjg

�
�

�

	
log

�
Eexp��

	

�
Cf�i�

��
� ���a�

or

min
f�zjg

�p�i�	� � min
f�zjg

�
�

�

	
log

�
Eexp��

	

�
Cp�i�

��
� ���b�

where Cf�i �
Pi

j�� e
�
f�ief�i and Cp�i �

Pi
j�� e

�
p�iep�i� The criteria in ���a� and ���b� are known

as the a posteriori and a priori exponential cost functions� and any �lters that minimize �f�i�	�

and �p�i�	� are referred to as a posteriori and a priori risk�sensitive �lters� respectively� The

scalar parameter 	 is correspondingly called the risk�sensitivity parameter� Some intuition

concerning the nature of this modi�ed criterion is obtained by expanding �i�	� �where we have

dropped the subscripts f and p since the argument follows for both �ltered and predicted

estimates� in terms of 	 and writing�

�i�	� � E�Ci��
	

�
V ar�Ci� � O�	���

The above equation shows that for 	 � �� we have the risk�neutral case �i�e�� the conventional

Kalman �lter�� When 	 � �� we seek to maximize Eexp�� �
�
Ci�� which is convex and decreasing

in Ci� Such a criterion is termed risk�seeking �or optimistic� since larger weights are on small

��



values of Ci� and hence we are more concerned with the frequent occurrence of moderate values

of Ci than with the occasional large values� When 	 � �� we seek to minimize Eexp�� �
�
Ci��

which is convex and increasing in Ci� Such a criterion is termed risk�averse �or pessimistic�

since large weights are on large values of Ci� and hence we are more concerned with the

occasional occurence of large values than with the frequent occurence of moderate ones�

The relationship between the risk�sensitive criterion and the H� criterion was �rst noted

in ���
 and has been further discussed in ��
� �	
� It may be formally stated as follows� In

the risk�averse case 	 � �� the risk�sensitive optimal �lter with parameter 	 is given by the

central H� �lter with level � � �	�
�
� � In particular� there is a certain smallest value of the

risk�sensitivity parameter �	� after which the minimizing property of �i�	� breaks down� and it

is this value that yields the optimal central H� �lter with �opt � ��	�����

	�� Risk�sensitive Adaptive Filtering

Using the discussion of Section ���� we are now in a position to state the risk�sensitive results

for LMS and normalized LMS�

Theorem � �Normalized LMS and Risk�sensitivity� Consider the state�space model ��
	

where the w and fvjg are independent Gaussian random variables with means �wj�� and �� and

variances �I and I� respectively� The solution to the following minimization problem

min
f�zjjjg

�f �	� � min
f�zjjjg

�
�log

�
Eexp�

�

�
Cf��

��
����

where Cf �
P�

j�� e
�
f�ief�i� and the expectation is taken over w and fvjg subject to observing

fd�� d�� � � � � dig� is given by the normalized LMS algorithm

�ziji � hi �wji�

and

�wji�� � �wji �
�h�i��

� � �hi��h
�
i��

�di�� � hi�� �wji� � �wj��� ����

�	



Theorem �	 �LMS and Risk�sensitivity� Consider the state�space model ��
	 where the

w and fvjg are independent Gaussian random variables with means �wj�� and �� and variances

�I and I� respectively� Suppose moreover� that the fhig are exciting� and that

� � � � inf
i

�

hih
�
i

�

Then the solution to the following minimization problem

min
f�zjg

�p�	� � min
f�zjg

�
�log

�
Eexp�

�

�
Cp��

��
����

where Cp �
P�

j�� e
�
p�iep�i� and the expectation is taken over w and fvjg subject to observing

fd�� d�� � � � � di��g� is given by the LMS algorithm

�zi � hi �wi���

and

�wji � �wji�� � �h�i �di � hi �wji��� � �wj��� ��
�

Before closing this section we should remark that the central H� �lters possess other

properties in addition to the one described above� In the game theoretic formulation of H�

estimation� the central �lter corresponds to the solution of the game ���
� Morever� among

all H� estimators that achieve a certain level �� the central solution can be shown to be the

maximum entropy ���
 solution� However� we shall not pursue these directions here�


 Further Remarks

In addition to yielding a new interpretation for the LMS algorithm and providing it with a

rigorous basis� the results described in this paper have lent themselves to various generalizations

and have allowed the authors to obtain several new results� We close this paper by listing some

of these ideas and results here� We should also mention that we believe the framework presented

in this paper provides a new way of looking at adaptive algorithms and should be worthy of

further scrutiny�

��
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Figure 
� The criterion ���	 is termed risk averse �or pessimistic	 since the cost function

exp�Cp
�� is very large for large values of Cp� Hence we are more concerned with the occasional

occurence of large values of Cp than with the frequent occurrence of moderate ones� This fact

corresponds well with the intuition gained from the H� optimality of the LMS algorithm� We

have also plotted Cp
� �the dashed line	 to compare the two cost functions� since the RLS

algorithm minimizes the expected value of Cp
��

LMS with Time�Varying Learning Rate

In many applications one uses the LMS algorithm with time�varying stepsize �or learning rate��

viz��

�wji � �wji�� � �ih
�
i �di � hi �wji���� �wj��� ����

In this case� it is straightforward to show that if the vectors f�
���
i hig are exciting� and if

�ihih
�
i � � for all i� then the LMS algorithm with time�varying stepsize solves the following

minimax problem�

inf
F

sup
w�v�h�

P�
j�� �j jep�j j

�

jw� �wj��j� �
P�

j�� �j jvj j
�

� �� ����

H� Adaptive Filtering

In this paper we have shown that if adaptive �ltering for output prediction error is considered

then the central H��optimal adaptive �lter is LMS� It is also possible to consider prediction

of the �lter weight vector itself� and for the purpose of coping with time�variations� to consider

exponentially weighted� �nite�memory and time�varying adaptive �ltering� This results in

��



some new adaptive �ltering algorithms that may be useful in uncertain and non�stationary

environments �see ��	
��

H� Norm Bounds for the RLS Algorithm

In order to compare the robustness of H��optimal algorithms �such as RLS� with H��optimal

algorithms �such as LMS� it it useful to obtain H� norm bounds for these algorithms� This

has been done for the RLS algorithm in ���
� where it is shown that unlike LMS� the H� norm

of the RLS algorithm depends on the input data fhig and� roughly speaking� grows linearly in

the parameter ��

A Time�Domain Feedback Analysis

Using some of the ideas presented here� a time�domain feedback analysis of recursive adaptive

schemes� including gradient�based and Gauss�Newton �lters has been developed ���� ��
� for

both the FIR and IIR contexts� The analysis highlights an intrinsic feedback structure in terms

of a feedforward lossless or contractive map and a feedback memoryless or dynamic map� The

structure lends itself to analysis via energy conservation arguments and via standard tools

in system theory such as the small gain theorem ���
� It further suggests choices for the

adaptation gains �or step�sizes� in order to enforce a robust performance in the presence of

disturbances �along the lines of H�theory�� as well as improve the convergence speed of the

adaptive algorithms�

Nonlinear Problems

The results presented in this paper are for linear adaptive �lters and can be somewhat gener�

alized to nonlinear adaptive �lters �such as neural networks� if one linearizes these nonlinear

models around some suitable point� Using this approach it can be shown �see ���
� that� for

nonlinear problems� instantaneous�gradient�based algorithms �such as backpropagation ���
�

are locally H��optimal� This means that if the initial estimate of the weight vector is close

enough to its true value� and if the disturbances are small enough� then the maximum energy

��



gain from the disturbances to the output prediction errors is arbitrarily close to one� Global

H��optimal �lters can also be found in the nonlinear case� but they have the drawback of

being in�nite�dimensional ���
�

�� Conclusion

We have demonstrated that the LMS algorithm is H� optimal� This result solves a long stand�

ing issue of �nding a rigorous basis for the LMS algorithm� and also con�rms its robustness�

We �nd it quite interesting that despite the fact that there has only been recent interest in the

�eld of H� estimation� there has existed an H� optimal estimation algorithm that has been

widely used in practice for the past three decades�
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A A First Principles Proof of the H� Optimality of LMS

In this appendix we shall outline a �rst principles proof of the H� optimality of the LMS

and normalized LMS algorithms that does not require the results of Theorems � and � on H�

�ltering� The proofs rely on some easily veri�ed inequalities� We begin with normalized LMS�

�See also the last section in ��
 and ���
��

A�� The Normalized LMS Algorithm

Recall that in Sec� ���� after the statement of Theorem �� we constructed a disturbance signal

such that for any � � ��

kefk
�

���jw � �wj��j� � kvk�
� �� ��

Since this was just one special disturbance signal� we conclude that if the input vectors are

exciting� we have

sup
w�v�h�

kefk
�

���jw � �wj��j� � kvk�
� �� ���

We shall now show that the normalized LMS algorithm achieves one in the above inequality�

This� of course� also shows that �f�opt � �� To this end� note that the normalized LMS algorithm

�wjj � �wjj�� �
h�j

��� � hjh�j
�dj � hj �wjj����

can� after some rearrangement� be written as

�wjj�� � �wjj � �h�i �dj � hj �wjj��

If we now de�ne �wjj � w� �wjj � the above expression allows us to write

�����
h

�wjj��
i

� �����
h

�wjj � �h�i �dj � hj �wjj�
i
� ���

�




�The reason for multiplying both sides by ����� will become clear in a moment�
 On the other

hand� we may write vj � dj � hjw as

vj � �dj � hj �wjj�� hj �wjj� ���

Squaring both sides of ��� and ��� and adding the results yields

���j �wjj��j
� � jvj j

� � ���j �wjj j
� � jhj �wjjj

� � �� � �hjh
�
j ��dj � hj �wjj�

�� ���

Now since the third term on the RHS of the above expression is positive� and since hj �wjj � ef�j �

we may write

���j �wjj��j
� � jvj j

� � ���j �wjj j
� � jef�j j

�� ���

If we now add all inequalities of the form ��� from time j � � to time j � i� we have

���jw � �wj��j
� �

iX
j��

jvj j
� � ���j �wjij

� �
iX

j��

jef�jj
� �

iX
j��

jef�jj
�� �
�

which in turn implies Pi
j�� jef�jj

�

���jw� �wj��j� �
Pi

j�� jvj j
�
� �� ���

Thus� for normalized LMS� in the limit as i�	 we have

sup
w�v�h�

P�
j�� jef�j j

�

���jw � �wj��j� �
P�

j�� jvj j
�

�
kefk�

���jw� �wj��j� � kvk�
� �� ���

which is the desired result�

A�� The LMS Algorithm

The proof for the LMS algorithm follows the exact same lines as the one above� Eq� ��� is now

replaced by

�����
h

�wjj
i

� �����
h

�wjj�� � �h�i �dj � hj �wjj���
i
� �	�

and ��� by

vj � �dj � hj �wjj���� hj �wjj��� ����

This time we square both sides of �	� and ���� and subtract the results to obtain

���j �wjjj
� � jvj j

� � ���j �wjj��j
� � jhj �wjj��j

� � ��� �hjh
�
j ��dj � hj �wjj���

�� ����

��



Now since we have the bound � � �

hjh
�
j
� the third term on the RHS is negative� and we can

write

���j �wjj��j
� � jvj j

� � ���j �wjjj
� � j hj �wjj��� �z �

ep�j

j�� ����

The remainder of the proof is now identical to the normalized LMS case�

��


