Mathematical Models of Systems

Outlines

- Block Diagram Models
- Basic Elements of Signal Flow Graph
- Basic Properties
- Definitions of Signal Flow Graph Terms
- Mason Theory
- Examples

Block Diagram Models

U(s)

- Visualize input output relations
- Useful in design and realization of (linear) components
- Helps understand flow of information between internal variables.
- Are equivalent to a set of linear algebraic equations (of rational functions).
- Mainly relevant where there is a cascade of information flow

Block Diagram Manipulation Rules

X3

$$\frac{R(s)}{1+\frac{s}{K_cK_p}} \xrightarrow{1+\frac{s}{K_cK_p}} \xrightarrow{\frac{K_cK_p}{s(\tau_ps+1)}} \xrightarrow{C(s)}$$

$$\frac{\frac{K_cK_p}{s(\tau_ps+1)}}{1+\frac{K_cK_p}{s(\tau_ps+1)}} \xrightarrow{C(s)}$$

$$\frac{R(s)}{\left(1+\frac{s}{K_cK_p}\right)} \left(\frac{K_cK_p}{s(\tau_ps+1)+K_cK_p}\right) \xrightarrow{C(s)}$$

9

Signal Flow Graphs

- Alternative to block diagrams
- Do not require iterative reduction to find transfer functions (using Mason's gain rule)
- Can be used to find the transfer function between any two variables (not just the input and output).
- Look familiar to computer scientists (?)

Signal-flow graph

From Wikipedia, the free encyclopedia

A signal-flow graph (SFG) is a special type of block diagram, constrained by rigid mathematical rules, that is a graphical means of showing the relations among the variables of a set of linear algebraic relations. Nodes represent variables, and are joined by branches that have assigned directions (indicated by arrows) and gains. A signal can transmit only in the direction of the arrow.

Utility of Signal Flow Graphs

- Alternative to block diagram approach
 - may be better for complex systems
 - good for highly interwoven systems
 - system variables represented as nodes
 - branches (lines) between nodes show relationships between system variables
- The "flow graph gain formula" (Mason) allows the system transfer function to be directly computed without manipulation or reduction of the diagram. 10

Example 1 Simple amplifier

$$y_{1} = a_{11}x_{1}$$

$$x_{1} = y_{1}/a_{11}$$

$$x_{1} = y_{1}/a_{11}$$

$$x_{1} = y_{1}/a_{11}$$

$$x_{1} = y_{1}/a_{11}$$

Figure 1: Simple SFG

Amplification of a signal x_1 to become a larger output y_2 by an amplifier with gain a_{11} is described mathematically by:

which becomes the signal flow graph of Figure 1. Although this equation is represented by the SFG of Figure 1, the algebraically equivalent relation

is *not* considered to be implied by Figure 1. That is, the SFG is unilateral, sometimes emphasized by calling x_1 a "cause" and y_1 an "effect", or by calling x_1 an "input" and y_1 an "output".

Basic Elements of Signal Flow Graph

• A Signal flow graph is a diagram consisting of nodes that are connected by several directed branches.

Basic Elements of Signal Flow Graph

- A **node** is used to represent a variable (inputs, outputs, other signals)
- A **branch** shows the dependence of one variable (**node**) on another variable (**node**)
 - Each branch has GAIN and DIRECTION
 - A signal can transmit through a branch only in the direction of the arrow

- If gain is not specified gain =1

$$G$$
 B
 $B = G A$

Example 2 Two-port network $y_1 = a_{11} x_1 + a_{12} x_2$ $y_2 = a_{21} x_1 + a_{22} x_2$, $a_{11} = a_{11} x_1 + a_{22} x_2$

Figure 2: Two-port SFG

The two coupled equations below can represent the current-voltage relations in a two-port network:

a21

which equations become the signal flow graph of Figure 2.

Nodes

- A node is used to represent a variable
- Source node (input node)
 - All braches connected to the node are leaving the node
 - Input signal is not affected by other signals
- Sink node (output node)
 - All braches connected to the node are entering the node
 - output signal is not affecting other signals

Input / Output

- Input (source) has only outgoing edges
- Output (sink) has only incoming edges
- any variable can be made into an output by adding a sink with "1" edge

Relationship Between Variables

Another Example

Basic Properties

- Signal flow graphs applies to linear systems only
- Nodes are used to represent variables
- A branch from node X to node Y means that Y depends on X
- Value of the variable (node) is the sum of gain of branch * value of node
- Non-input node cannot be converted to an input node
- We can create an output node by connecting unit branch to any node

Terminology: Paths

• A path: is a branch or a continuous sequence of branches that can be traversed from one node to another node

Terminology: Paths

- A path: is a branch or a continuous sequence of branches that can be traversed from one node to another node
- Forward path: path from a source to a sink
- Path gain: product of gains of the braches that make the path

Terminology: loop

- A **loop:** is a closed path that originates and terminates on the same node, and along the path no node is met twice.
- Nontouching loops: two loops are said to be nontouching if they do not have a common node.

Block Diagram vs Signal Flow Graph

• Blocks ⇒ Edges (branches)

(representing transfer functions)

Edges + junctions ⇒ Vertices (nodes)
 (representing variables)

Basic Signal Flow Graph

Algebraic Eq representation

- $\mathbf{x} = \mathbf{A}\mathbf{x} + \mathbf{r}$ $X_1 = a_{11}X_{1+}a_{12}X_{2+}r_1$ $X_2 = a_{21}X_{1+}a_{22}X_{2+}r_2$
- $\mathbf{y}(s) = \mathbf{G}(s)\mathbf{u}(s)$

An example...

$$(1 - a_{11})x_1 + (-a_{12}) x_2 = r_1$$

$$(-a_{21})x_1 + (1 - a_{22})x_2 = r_2$$

• This have the solution

$$x_1 = (1 - a_{22})/\Delta r_1 + a_{12}/\Delta r_2$$

$$x_2 = (1 - a_{11})/\Delta r_2 + a_{21}/\Delta r_1$$

$$\Delta = 1 - a_{11} - a_{22} + a_{22}a_{11} - a_{12}a_{21}$$

$$\Delta = 1 - a_{11} - a_{22} + a_{22} a_{11} - a_{12} a_{21}$$

- Self loops a_{11} , a_{22} , $a_{12}a_{21}$
- Product of non touching loops $a_{22}a_{11}$

SGF : in general

The linear dependence (T_{ij}) between the independent variable x_i (input) and the dependent variable (output) x_i is given by Mason's SF gain formula

$$\sum_{ij} P_{ijk} \Delta_{ijk}$$

$$T_{ij} = \frac{k}{\Delta}$$

$$P_{ijk} = k^{\text{th}} \text{ path from } x_i \text{ to } x_j$$

$$\Delta = \text{determination fthe graph}$$

$$\Delta_{ijk} = \text{cofactor of the path } P_{ijk}$$

- Or
- Δ =1 –(sum of all different loop gains) +(sum of the gain products of all combinations of 2 non-touching loops)
- -(sum of the gain products of all combinations of 3 non-touching loops)...
- The cofactor Δ_{ijk} is the determinant with loops touching the kth path removed

Another SFG Example

 $y_2 = a_{12}y_1 + a_{32}y_3$

Another SFG Example

^a32 ^a12 0 0 $y_2 = a_{12}y_1 + a_{32}y_3$ У1 У₃ У₂ y₄ У₅ ^a32 ^a43 ^a23 ^a12 \bigcirc 0 $y_3 = a_{23}y_2 + a_{43}y_4$ y₁ У₃ У<u>4</u> У₂ У₅ ^a32 a43 ^a44 ^a12 ^a23 ^a34 0 Θ $y_4 = a_{24}y_2 + a_{34}y_{3+}a_{44}y_4$ У1 У₂ У3 У<u>5</u> y₄ ^a24 ^a43 ^a32 ^a44 ^a45 ^a23 ^a34 ^a12 $y_5 = a_{25}y_2 + a_{45}y_4$ У₁ У₃ У₄ У₂ У₅ ^a24 ^a25

Definitions

- Input: (source) has only outgoing branches
- Output: (sink) has only incoming branches
- Path: (from node *i* to node *j*) has no loops.
- Forward-path: path connecting a source to a sink
- Loop: A simple graph cycle.
- Path Gain: Product of gains on path edges
- Loop Gain: Product of gains on loop
- Non-touching Loops: Loops that have no vertex in common (and, therefore, no edge.)

Determine the transfer function between V and U

- The number of forward paths from U to V = ?
- Path Gains ?
- Loops ?
- Determinant ?
- Cofactors ?
- Transfer function ?

Example

Determine the transfer function between V and U

- The number of forward paths from U to V = 2
- Path Gains ABC, 3H
- Loop Gains B, CK
- Transfer function (ABC+3H-3HB)/(1-B-CK)

- Assume R(s) = 0, desire to find the transfer function C(s)/D(s).
- There is only one forward path between D(s) and C(s), therefore k = 1.
- There are two loops. They are touching. 15

G₂(s) F(s) G₁(s) E(s) 1 Q(s)-H(s) $P_1 = G_2(s)$ $\Delta = 1 - [-G_1(s)G_2(s)H(s) - G_1(s)G_2(s)]$ $\Delta_1 = 1$ (Both loops touch the kth path)

Example of Gain Formula Use D(s) (S) R(s)

- A disturbance input is an unwanted or unavoidable input signal that affects a system's output. Examples:
 - load torque in motor control
 - open door in room climate control

Disturbance Portion Redrawn

An example

An example:

- Two paths :P1, P2
- Four loops
- $P_1 = G_1 G_2 G_3 G_4$, $P_2 = G_5 G_6 G_7 G_8$
- $L_1 = G_2 H_2 L_2 = G_3 H_3 L_3 = G_6 H_6 L_4 = G_7 H_7$ $\Box \Lambda = 1 - \Box$
 - $(L_1+L_2+L_3+L_4)+(L_1L_3+L_1L_4+L_2L_3+L_2L_4)$
- Cofactor for path 1: $\Delta 1 = 1 (L_3 + L_4)$
- Cofactor for path 2: $\Delta 2 = 1 (L_1 + L_2)$
- $T(s) = (P_1 \Delta_1 + P_2 \Delta_2) / \Delta$

Another example

- 3 Paths
- 8 loops

Mason's Gain Rule (1956)

Given an SFG, a source and a sink, N forward paths between them and K loops, the gain (transfer function) between the source-sink pair is

$$T_{ij} = \frac{\sum P_k \Delta_k}{\Delta}$$

 P_k is the gain of path k, Δ is the "graph determinant": $\Delta = 1 - \sum$ (all loop gains)

- + \sum (products of non-touching-loop gain pairs)
- \sum (products of non-touching-loop gain triplets) + ...

 $\Delta_k \!=\! \Delta$ of the SFG after removal of the k_{th} forward path

Terms for Mason's Gain Formula

- Path: A branch or sequence of branches that can be traversed from one node to another.
- Loop: A closed path, along which no node is met twice, that originates and terminates in the same node.
- Nontouching: Two loops are nontouching if they do not share a common node.

9

 Gain: Refers, in this case, to the product of transfer functions.

Mason's Gain Formula:

(s) l(s)

- P_k = the gain of the kth forward path between I(s) and O(s).
- ∆ = 1 (sum of all individual loop gains)
 + (sum of gain products of all combinations of 2 nontouching loops)
 (sum of gain products of all combinations of 3 nontouching loops)
 + ...
- ∆_k = value of ∆ for that part of graph nontouching the kth forward path.

Mason's Rule for Simple Feedback loop

 $P_1 = G(s)$

 $\Delta_1 = 1$

 $T(s) = \frac{P_1 \Delta_1}{\Delta} = \frac{G(s)}{\Delta} = \frac{G(s)}{1 + G(s)H(s)}$

A Feedback Loop Reduces Sensitivity To Plant Variations

y(s)/u(s)=10000/(1+10000*0.01)=99.01

G=20000 y(s)/u(s)=20000/(1+20000*0.01)=99.50